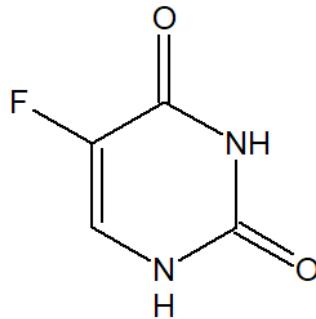


Chemsketch Study of 5-Fluorouracil (5FU) : A chemotherapy drug

K. Laxmi

Professor of Chemistry Department of Chemistry

Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad -500 075, Telangana, INDIA


Email ID: klaxmi_chm@cbit.ac.in

Abstract: 5-fluorouracil (5-FU) is an antimetabolite drug that is widely used for the treatment of cancer particularly for colorectal cancer. Anticancer activity of 5-FU can be increased by understanding the mechanism of action of 5-FU. Properties of 5-Fluorouracil (5FU) are studied theoretically by employing web tool of ACD chemsketch.

Keywords: 5-Fluorouracil, ACD/ChemSketch, ACD/3D Viewer

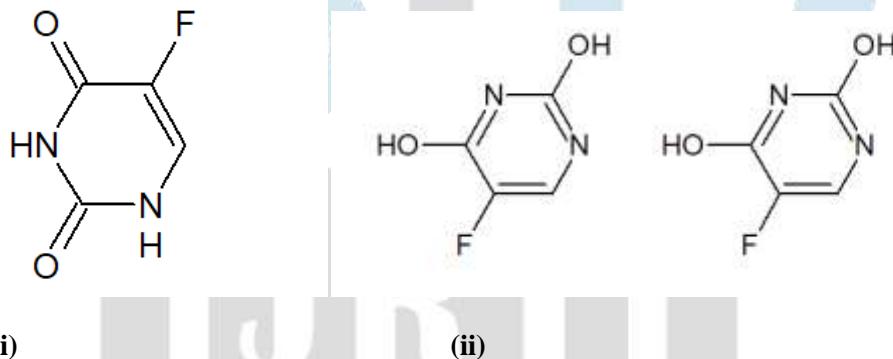
Introduction

An anticancer medication 5-Fluorouracil(5FU) interferes with DNA synthesis and gradually slows growth of these cancer cells and further kills them¹⁻⁵. (Fig 1). 5-FU is used in some ophthalmological and dermatological conditions. It is used to treat actinic keratosis⁶ (pre-cancerous skin lesions) and basal cell carcinoma and it works by selectively destroying sun-damaged skin cells. 5-FU is also used in ophthalmology⁷ for conditions like glaucoma filtering, dacryocystorhinostomy, pterygium, and vitreoretinal surgery. 5-FU is available in various forms, including creams for topical application and injections for systemic treatment

5-fluoropyrimidine-2,4(1H,3H)-dione

Figure 1. structure of 5-Flurouracil

Hypothetical Study of 5-Flurouracil Using Chemsketch Software


ACD/Labs software provides a Chemical Naming Service which is used to name compounds quickly and accurately. Systematic names according to IUPAC and CAS Index nomenclature rules can be generated by employing ACD. A variety of molecular descriptors can be calculated by the application of ACD/ChemSketch⁸⁻¹⁰. As determined by Chemsketch the molecular formula of 5Flurouracil is C₄H₃FN₂O₂ and and its Molecular Weight is 130.0772232. IUPAC name of 5-Flurouracil is 5-fluoro-1H-pyrimidine-2,4-dione¹¹.

The structure of chemical species can be described by simplified molecular-input line-entry system (SMILES)¹² which is in form of a line notation. SMILES strings are further imported by molecule editors and are converted into two-dimensional drawings or three-dimensional models of the molecules. Smiles notation of 5Flurouracil is FC1=CNC(=O)NC1=O (Table.1) and the structure of 5FU drawn from SMILES is given in figure 2.

An input chemical structure (in the form of a ‘connectiontable’) is converted to a unique and predictable set of ASCII characters so that InChI label is generated. Under IUPAC project during the period 2000–2004 InChI procedures were developed¹³. At the US National Institute of Standards and Technology (NIST) the technical development was carried out. InChI name of 5-fluorouracil is 1S/2C4H3FN2O2/c2*5-2-1-6-4(9)7-3(2)8/h2*1H,(H2,6,7,8,9). InChI . Structure of 5-fluorouracil is displayed in figure 2. GHASVSINZRGABV-UHFFFAOYSA-N represents the InChI key of 5-fluorouracil.

Table.1 Chemical naming of 5-fluorouracil as determined by ACD/chemsketch

IUPAC name	5-fluoro-1H-pyrimidine-2,4-dione
InChI name	1S/2C4H3FN2O2/c2*5-2-1-6-4(9)7-3(2)8/h2*1H,(H2,6,7,8,9)
SMILES notation	FC1=CNC(=O)NC1=O
InChI Key	GHASVSINZRGABV-UHFFFAOYSA-N

Figure 2. Structure of 5-fluorouracil from (i) SMILES and (ii) from InChI

The most favorable tautomeric form is the drawn chemical structure. Selected structure does not have Markush fragments and does not have Stereoisomers.

Properties of 5-fluorouracil as determined by ACD/chemsketch

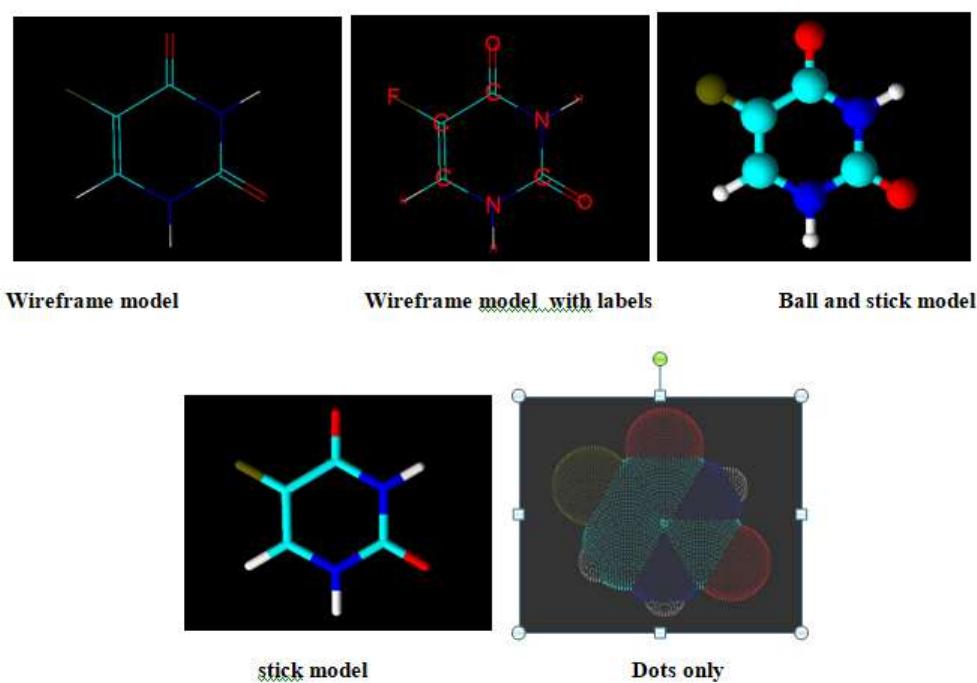
Properties for compounds like prediction of Molecular formula, Formula weight, Composition, Molar refractivity, Molar volume, Parachor, Index of refraction, Surface tension, Density, Dielectric constant, Polarizability, Monoisotopic, nominal, and average mass are predicted by ACD/ ChemSketch.

Table 2. Properties of 5-fluorouracil as determined by acd/chemsketch

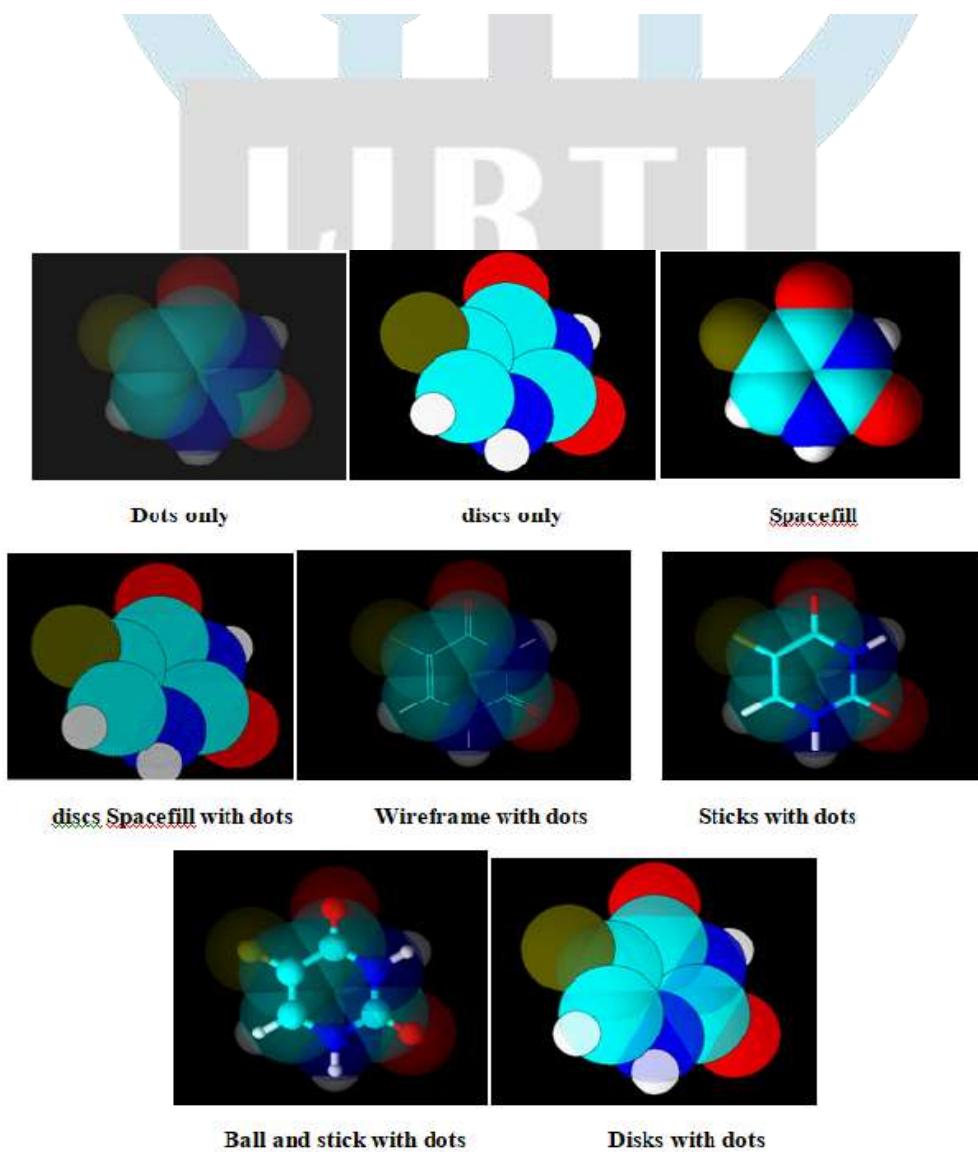
Molecular Formula:	C ₄ H ₃ FN ₂ O ₂
Formula Weight:	130.0772232
Composition:	C(36.93%) H(2.32%) F(14.61%) N(21.54%) O(24.60%)
Molar Refractivity:	25.85 ± 0.4 cm ³
Molar Volume:	84.5 ± 5.0 cm ³
Parachor:	220.4 ± 6.0 cm ³

Index of Refraction:	1.523 ± 0.03
Surface Tension:	46.1 ± 5.0 dyne/cm
Density:	1.53 ± 0.1 g/cm³
Dielectric Constant:	Not available
Polarizability:	10.24 ± 0.5 10⁻²⁴cm³
RDBE:	4
Monoisotopic Mass:	130.017856 Da
Nominal Mass:	130 Da
Average Mass:	130.0772 Da
M+:	130.017307 Da
M-:	130.018404 Da
[M+H]+:	131.025132 Da
[M+H]-:	131.026229 Da
[M-H]+:	129.009482 Da
[M-H]-:	129.010579 Da

log P of 5-flurouracil


The propensity of a neutral molecule to differentially dissolve in two immiscible phases is measured in terms of a quantitative descriptor of lipophilicity Partition constant P. logarithmic ratio (logP) from structure which is an estimate of the value of the octanol-water partitioning coefficient is provided by logP prediction model. ACD/LogP is used worldwide by chemists in various arms of chemical research. Calculated log P of 5-flurouracil is -0.78/- 0.31.

3D Viewer –3D Optimised Forms of 5-flurouracil


An accurate 3D modeling and visualization program ACD/3D Viewer ^{14,15} is fully integrated with ACD/ChemSketch. It is employed to draw 2D structures and thereby allows to obtain their 3D representations in color display. ACD/3D Viewer is a powerful program that presents various styles of structure 3D representation. 3D structure can be displayed in various forms like wireframe, wireframe model with labels, Ball and stick model, stick model ,dots forms, Dots only, discs only, Spacefill, discs Spacefill with dots, Wireframe with dots, Sticks with dots, Ball and stick with dots and Disks as displayed in figures 4,5

ACD/3D Viewer is employed to

- i. Manipulate 3D models
- ii. Display a 3D structure
- iii. Add an overlay of small-dots and is used to Measure and change bond lengths, bond angles
- iv. move, 2D and 3D rotate, also at a fixed angle, resize, change styles, and colors
- v. Display a 3D structure as stick, ball-and-stick, spheres, or disks
- vi. Optimize the structure using a 3D CHARMM-type of force field
- vii. Switch from 3D to 2D display in the ChemSketch window at the click of a button
- viii. Set the 3D structure to Auto-rotate, with or without changing the style of structure display
- ix. Rotate and move selected atoms rather than entire structures
- x. Change and delete atoms, assign the center of rotation to an atom
- xi. View 3D structure in perspective
- xii. Export 3D models to other geometry optimization programs

Figure 4. 3D optimized wireframe, Wireframe model with labels, Ball and stick model, stick model ,dots forms of 5-fluorouracil

Figure 5. 3D optimized Dots only, discs only, Spacefill, discs Spacefill with dots, Wireframe with dots, Sticks with dots, Ball and stick with dots and Disks with dots of 5-fluorouracil

Conclusion

From the above computational studies, it is clearly inferred that 5-fluorouracil is a chemically reactive compound. Physicochemical aspects of 5FU were clearly interpreted by the Chemsketch study. The presence of potential donor atoms in 5FU were confirmed by the calculation of physicochemical properties. These studies present us the opportunity to take a critical look at this novel compound.

REFERENCES

1. Kyle Holen, Nancy Kemeny, Colorectal Cancer: Epidemiology and Treatment, Joseph R. Bertino, Encyclopedia of Cancer (Second Edition), Academic Press, 2002, Pages 1-8, ISBN 9780122275555, <https://doi.org/10.1016/B0-12-227555-1/00056-3>.
2. Longley, D., Harkin, D. & Johnston, P. 5-Fluorouracil: mechanisms of action and clinical strategies. *Nat Rev Cancer* **3**, 330–338 (2003). <https://doi.org/10.1038/nrc1074>
3. Fluorouracil, J.K. Aronson, Meyler's Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions (Fifteenth Edition), Elsevier, 2006, Pages 1407-1419, ISBN 9780444510051, <https://doi.org/10.1016/B0-44-451005-2/01036-6>.
4. Jingyi Hu, Anqi Li, Yueyang Guo, Ting Ma, Siqi Feng, The relationship between tumor metabolism and 5-fluorouracil resistance, Biochemical Pharmacology, Volume 218, 2023, 115902, ISSN 0006-2952, <https://doi.org/10.1016/j.bcp.2023.115902>.
5. Johnston, P. G. & Kaye, S. Capecitabine: a novel agent for the treatment of solid tumors. *Anticancer Drugs* **12**, 639–646 (2001)
6. Couch SM, Custer PL. Ophthalmic Plast Reconstr Surg. 2012 May-Jun;28(3):181-3. doi: 10.1097/IOP.0b013e3182467c68. PMID: 22460673
7. Joag MG, Sise A, Murillo JC, Sayed-Ahmed IO, Wong JR, Mercado C, Galor A, Karp CL. Topical 5-Fluorouracil 1% as Primary Treatment for Ocular Surface Squamous Neoplasia. *Ophthalmology*. 2016 Jul;123(7):1442-8. doi: 10.1016/j.ophtha.2016.02.034. Epub 2016 Mar 27. PMID: 27030104; PMCID: PMC4921289.
8. "Chemsketch". Retrieved 21 August 2014.
9. "Utilizando Chemsketch". Retrieved 21 August 2014.
10. ACD/ChemSketch Freeware, version 11 (2006) Advanced Chemistry Development Inc., Toronto, ON, Canada, www.acdlabs.com.
11. International Union of Pure and Applied Chemistry, Organic Chemistry Division Commission on Nomenclature of Organic Chemistry, Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H, 1979 Edition, J. Rigaudy and S. P. Klesney, eds., Pergamon Press, Oxford, 1979, (Sections A, B, C, D, E, and F are available).
12. "SMILES Tutorial: What is SMILES?". U.S. Environmental Protection Agency. Retrieved 2012-09-23.
13. International Union of Pure and Applied Chemistry, Organic Chemistry Division, Commission on Nomenclature of Organic Chemistry (III.1), A Guide to IUPAC Nomenclature of Organic Compounds (Recommendations 1993), R. Panico, W.H. Powell and Jean-Claude Richer, eds., Blackwell Scientific Publications, Oxford, 1993.
14. P. Wheeler, S. Hayward, M. Elyashberg, "182492-Computer-Assisted Structure Elucidation in Routine Analysis" Jan 26, 2016
15. ChemSketch Technical Note: Advanced Features and Functions, S. Myles *et al*, October 2014
16. Katanguru Laxmi. (2017). Chemsketch Study of Phenobarbital: An Antiepileptic Drug. *International Journal of Computational and Theoretical Chemistry*, 5(3), 25-29. <https://doi.org/10.11648/j.ijctc.20170503.11>