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ABSTRACT 

In this work, we will study and analyze the performance of Convolutional Neural Networks (CNN) based techniques for sound 

classification which may help in case of urban surveillance applications. Recently, many researchers have used different feature 

extraction techniques along with different machine learning (ML) techniques to classify urban sound. Deep learning (DL) models like 

VGG-16, AlexNet, GoogleLeNet have also been explored in this direction effectively. In this research work, we proposed various 

custom designed 1D and 2D CNN models along with different extracted features like; Mel Frequency Cepstral Coefficients (MFCC), 

Chroma short-time Fourier transform (Chroma stft), Mel-spectrogram, and Spectral Contrast for urban sound classification. Detailed 

ablation studies were carried out with respect to different filter sizes, number of convolutional layers, and various activation functions 

to obtain state-of-the-art performances on the standard urban sound dataset. The experimental results show better performances with 

our custom CNN models compared to the classification models proposed in the existing recent literature works. 
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1. INTRODUCTION 

Sound classification tasks are useful in very diverse fields 

such as Security and Surveillance, Healthcare, Agriculture, 

Environmental Monitoring, Robotics, Education and Learning, 

Speech and Audio Processing, Industrial Applications, Smart 

Homes, Autonomous Vehicles, etc. With the expansion of 

cities, approximately 80% of the human population will live in 

cities by 2050. The cities will be well covered with various 

sensors and monitoring tools. With the growth of urbanization, 

the web of CCTV cameras is also expanding [1]. Most of the 

cameras are for video recording only. But very few of them 

are able to capture sounds. The video-only-camera can 

become useless if something happens which cannot be 

captured in a camera like a gunshot. So, we need cameras 

which can also record audio along the video for doing audio 

classification in real time. Suppose a person is shooting a gun 

and covering the gun with a bag, then the cameras would not 

recognize the gun shot. But if sound was recorded along with 

the video, then we can easily detect the gun shot. Secondly, 

distant things such as fighter jet cannot be easily detected by 

the image classification techniques. This will make the image 

classification technique confuse between a bird and the fighter 

jet. The detection of fighter jet like things make a lot of noise 

which is not possible for a bird to make. This way we can 

easily detect hidden or distant things which make a lot of noise 

in a very efficient way. Classification of Urban Sound will 

play a major role in the surveillance of our cities [2] in near 

future. 

Any sound can be categorized into various class of sounds 

based on its acoustic features. Recently, many researchers 

explored various acoustic feature extraction techniques along 

with machine learning (ML) and Deep learning (DL) 

techniques for classification of urban sounds effectively [3]. In 

these works, many feature extraction techniques like Mel 

Frequency Cepstral Coefficients (MFCC) [4, 5], Log-Mel 

spectrogram [1, 4], Spectral Contrast, Chroma stft (short-time 

fourier transform) are employed to extract the important, detailed 

and prominent features from the sound data using Python Librosa 

library. After the feature extraction of the recordings, any ML 

technique such as K-Nearest Neighbour (KNN), random forest, 

Support Vector Machine (SVM), Principle Component Analysis 

(PCA) [1] or deep learning techniques such as DenseNet [12], 

VGG-16, VGG-19, AlexNet, etc. or combination of any of these 

can be employed for doing the audio classification task. Now-a-

days, different types of models are being used for this task of 

audio classification. This includes long short-term memory 

(LSTM) networks [1], convolutional neural networks (CNNs) 

[6], artificial neural networks (ANNs), bidirectional LSTM 

(BILSTM) networks [5], Recurrent Neural Networks (RNN) [6] 

and many more. 

Author in [7] used MFCC for feature extraction and a very 

basic custom CNN model to classify the environmental sounds 

with an accuracy of 64.5%. In 2019, Abdoli et. al. [8] suggested 

using 1D CNN as it can take direct input from the audio signal. It 

can also work with varying length input with the use of sliding 

window showing and accuracy of 89%. Mushtaq et. al. [9] 

proposed the aggregation of both Mel spectrogram and Log-Mel 

spectrogram features and DenseNet-161 model. In [10], the 

author discussed performances of various ML techniques like 

Hidden Markov Models (HMM), Decision Trees (DT), K-NN 

and SVM for sound data classifications. He also discussed DL 

techniques like, CNN, Multilayer Perceptron (MLP), Deep 

Neural Networks (DNN), and Recurrent Neural Networks (RNN) 

for sound data classifications. Author in [11] did a systematic 

literature review (SLR) to evaluate small dataset through data 

augmentation in order to increase the dataset. The author in ref. 

[12] used spectrogram images of the audio from ESC-50 and 

ESC-10 dataset to achieve an accuracy of 49% and 77% with 

CNN and achieved an accuracy of 56% on ESC-10 in tensor 

deep stacking network (TDSN). 

In [13], the author first converted the audio signal into some 

suitable form using some signal representation techniques 

such as spectrograms, MFCC, wavelet decom position and 

linear predictive coding. After this, the author used five 
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different type of neural networks for the audio classification 

tasks, namely CNNs, Autoencoders, Transformers, 

Recurrent Neural Networks (RNNs) and Hybrid Models 

(CNN-RNN and CNN-Support Vector Machine). The 

author in [14] studied to identify both the recording device 

and the environment in which it is recorded. The author 

used 3 different environments (very quiet, quiet and noisy), 

4 classes of recording devices and 136 speakers (68 male 

and female each), and 3600 recordings of sentences, words 

and continuous speech using CRNN (CNN+RNN). Sound 

classification using Mel spectrogram as feature extraction 

method and LSTM is explored in the study [15]. In [16], the 

author used MFCC as feature extraction method and a 

combination of three convolutional layer, three pooling 

layers, LSTM and flattening of the output and achieved an 

accuracy of 93.58% on UrbanSound8K dataset. 

A combination of deep feature extraction, random 

subspaces K Nearest Neighbour (KNN) classifier and a 

custom CNN model is studied by the authors in [17]. The 

author in [18] used a combination of different feature 

extraction methods, consisting MFCC, Gammatone 

Frequency Cepstral Coefficients (GFCC), Constant Q-

transform (CQT) and Chromagram in the deeper CNN 

(DCNN) achieving an accuracy of 97.52% on 

UrbanSound8K, 94.75% on ESC-10, and 87.45% on ESC-

50. The author in [19] specially created manufacturing 

sound dataset (e.g. filing, hammering) and used a CNN, 

which receives log-Mel spectrograms of the sounds as 

input. The validation accuracy achieved was close to 100% 

displays an almost error-free performance; furthermore, the 

model converges very quickly to a stationary solution and 

also has very low validation loss. The study in [20] talks 

about determining the source of a weak sound, particularly 

in a busy or noisy surroundings and proposed a new 

attention-based context-aware neural network for weak 

environmental source classification. In [9], the model is 

based on simple log-power Short Time Fourier Transform 

(STFT) spectrograms and com bines them with several 

well-known approaches from the image domain (i.e., 

ResNet, Siamese-like networks and attention) achieving an 

accuracy of 97.0% (ESC-10), 91.5% (ESC-50) and 84.2% / 

85.4% (US8K mono / stereo). Another study on 

Environment Sound Classification Task (ESC) is conducted 

by Iqbal et. al. [21] where the MFCC is used for feature 

extraction and we evaluate the use of CNN and multiple 

ML models to classify the sound signal using spectrograms 

of the sound spectrum. A study is conducted by Bensakhria 

et. al. [22] to detect domestic violence using classification 

of audio using 1D-CNN which outperformed classic 

machine learning-based models with 91.45% accuracy. 

Author in ref. [23] presents his own sound database 

recorded (NoisenseDB) in an urban environment and by 

using three DNN classifier he achieved 82%, 70% and 64% 

accuracy respectively. 

Also, there is a large scarcity of labeled dataset in this 

domain. For e.g. Environ mental Sound Classification 

(ESC) dataset [24] consists of the sounds which can be 

easily available in our surroundings such as animal noise, 

traffic noise, human speech, etc. The sounds which are 

captured in a recording taken from an urban area are 

considered as Urban Sounds which includes sound samples 

like gun shot, siren, car horn, street music, dog bark, etc. The 

UrbanSound8K dataset contains most of these Urban Sounds 

[5]. Most of the above discussed works are either based on 

single feature analysis like MFCC [25] or GFCC [26], 

however considering various features may enhance feature 

extraction and analysis stages. 

In this research work, we proposed various custom designed 

1D and 2D CNN models along with different extracted 

features like; Mel Frequency Cepstral Coefficients (MFCC), 

Chroma short-time fourier transform (Chroma stft), Mel-

spectrogram and Spectral Contrast for urban sound 

classification. A detailed ablation studies carried out by 

progressively expanding filter size in each consecutive 

convolution layer along with concatenation of various 

convolutional layers, using and various activation functions to 

get state of arts performances on standard urban sound dataset. 

Experimental results show better performances with our 

custom CNN models when compared to classification models 

proposed in existing recent literature works. The rest of the 

paper is organized as: Section 1 gives introduction with 

existing literature survey in detail. Section 2 explains proposed 

methodology. Section 3 gives details of experimental results 

and ablation studies performance comparisons. Section 4 

concludes the findings. 

 

2. METHODOLOGY 

2.1 Dataset 

The dataset used in this study is the UrbanSound8K dataset, 

which contains 8,732 labeled audio samples spanning 10 

environmental sound classes. These include sounds such as dog 

barking, sirens, and street music, among others. The audio files 

are sampled at a 22,050 Hz sampling rate, and each file is 

assigned to one of the predefined classes. The class distribution 

of the dataset is shown in Figure 1. 

 
Figure 1: Class Distribution of the UrbanSound8K Dataset 

2.2 Preprocessing 

While processing audio segments, it is necessary to make length 

of all the audio segments of the same length. To resize them, we 

need to use padding which involves adding silence periods of 

zero values. To prepare the dataset for machine learning models, 

the audio samples were first pre-processed by extracting multiple 
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audio features. We utilized the following feature extraction 

techniques: 

2.2.1 Mel-Frequency Cepstral Coefficients (MFCCs) 

MFCC is commonly used feature in audio classification that 

captures the timbral texture of sound. These coefficients are 

derived from the Mel Spectrogram by applying a discrete 

cosine transform (DCT). The process starts by converting 

the audio signal into a Mel Spectrogram, then performing a 

logarithmic operation and a DCT to reduce the 

dimensionality. If 𝑋(𝑡, 𝑓) represents the spectrogram, ℎ𝑛(𝑓) 

is the Mel filter bank, and M is the number of filters then, 

𝑀𝐹𝐶𝐶𝑛(𝑡) = ∑.

𝑀−1

𝑚=0

log(∑|𝑋(𝑡, 𝑓) ⋅ ℎ𝑛(𝑓)|
2

𝐹−1

𝑓=0

) 

represents MFCC coefficients.  

Figure 2 and Figure 3 shows MFCC representations for 

sample audio files of Gun Shot and Siren respectively. 

 
Figure 2: MFCC Representation of Sample: Gun Shot 

 
Figure 3: MFCC Representation of Sample: Siren 

2.2.2 Chroma STFT Feature 

Chroma STFT feature represents the twelve different pitch 

classes in a signal, useful for capturing harmonic content. If 

𝑋(𝑡, 𝑓) is the spectrogram at time 𝑡 and frequency 𝑓, 𝑁 is 

the number of frequency bins, and w(k) is the weighting 

function, then 

𝐶ℎ𝑟𝑜𝑚𝑎(𝑡, 𝑓) = ∑ 𝑋(𝑡, 𝑓 + 𝑘)

𝑁−1

𝑘=0

⋅ 𝑤(𝑘) 

represents Chroma STFT. Figure 4 and Figure 5 shows 

Chroma Spectrograms for sample audio files of Gun Shot 

and Siren respectively. 

 
Figure 4: Chroma Representation of Sample: Gun Shot 

 
Figure 5: Chroma Representation of Sample: Siren 

2.2.3 Mel Spectrogram 

Mel spectrogram emphasizes lower frequencies and captures 

features useful for environmental sound classification. Mel 

Spectrogram is given as: 

𝑀(𝑓) = 2595 log10 (1 +
𝑓

700
) 

where 𝑓 is the frequency in Hz and 𝑀(𝑓) is the corresponding 

Mel frequency. Figure 6 and Figure 7 shows Mel Spectrogram 

for sample audio files of Gun Shot and Siren respectively. 

 
Figure 6: Mel Spectrogram for sample: Gun Shot 

 
Figure 7: Mel Spectrogram for sample: Siren 

2.2.4 Spectral Contrast 

Spectral Contrast feature measures the difference in amplitude 

between peaks and valleys in a sound spectrum, which is 

particularly useful for identifying different sound textures. If 

𝑃i represents the power in the 𝑖-th subband and 𝑁 is the total 

number of subbands, then 

𝑆𝑐 = ∑.

𝑁

𝑖=1

log (
𝑃𝑖−1
𝑃𝑖

) 

represents Spectral Contrast.  

Figure 8 and Figure 9 shows Spectral Contrast Spectrograms 

for sample audio files of Gunshot and Siren, respectively. 

 
Figure 8:  Spectral Contrast for sample audio: Gun Shot 

 
Figure 9: Spectral Contrast for sample audio: Siren 

For each audio file, all above four different features (MFCC, 

Chroma stft, Mel spectrogram, and Spectral Contrast) were 

extracted, and the resulting feature arrays were padded or 

truncated to a fixed length of 174 time steps to ensure 

consistency across all samples. The feature arrays were then 

concatenated to form a single feature vector for each audio 

clip. This feature vector was used as the input to the 

subsequent models. 
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2.3 Model Architecture 

We experimented with various Deep Learning (DL) models to 

classify sounds, with a focus on CNN architectures, which are 

well suited for extracting spatial patterns from data like 

spectrograms. We experimented with the performances of the 

following custom CNN models (Models 1-4) while comparing 

both Rectified Linear Unit (Relu) and Scaled Exponential 

Linear Unit (Selu) activation functions. 

Model-1 as shown in Figure 10 is based on 1D CNN 

architecture, which is perfect for sequential data like raw audio 

signals since its convolutional layers handle the audio input in 

a one-dimensional manner. The SELU activation function, 

which normalizes activations across layers, is incorporated 

into the model to help with greater generalization and faster 

convergence. To ensure that the model performs effectively 

when applied to unseen data, dropout layers are used to 

prevent overfitting. Although 1-D CNN architectures provide 

less number of trainable parameters and lower computational 

complexity; 2-D CNN architectures not only exhibit high pre 

diction performances, but also are effective for capturing both 

spatial and temporal dependencies. 

 
Figure 10: Model-1 based on 1-D CNN Architecture 

In order to analyze spectrogram-like inputs, where both time 

and frequency dimen sions are important, Model-2 uses a 2-D 

CNN architecture as shown in Figure 11. To capture the 

spatial correlations between time and frequency components, 

the model makes use of 2-D convolutional layers. The SELU 

activation function is used to increase the convergence and 

stability of the model. Dropout layers are used to prevent over 

f itting. During detailed ablation studies, it is found that the 

accuracy of this Model is still less compared to previous 1-D 

architectures as only one convolutional layer with 3x3 filter 

sized is used which was not capable of capturing essential 

features of input data. 

 
Figure 11: Model-2 based on 2D CNN Architecture 

Hence, Model-3 based on 2D CNN architecture with two 

different convolutional layers, each using different filter sizes 

(3x3 and 5x5) as shown in Figure 12 is analyzed. Here, 8 3x3 

filter being a small kernel size have a smaller receptive field and 

hence can extract small complex features. While, 5x5 being a 

mid-sized kernel has a large field view and hence can capture 

more global features. Finally, the output of both convolutional 

layers are concatenated to get good presentation of input features. 

During detailed ablation studies, it is found that the accuracy of 

this Model-3 with SELU (instead of RELU) activation function 

is enhanced more compared to Model-2. 

 
Figure 12: Model-3 based on 2D CNN Architecture with two different filter 
sizes 

With a deeper network and bigger filter sizes, Model-3 goes 

beyond the 2D CNN technique to catch more intricate patterns in 

the input spectrograms as shown in Figure 13. Model-3 uses 

three different convolutional layers, each using different filter 

sizes (3x3, 5x5 and 7x7). Here, 7x7 being a large-sized kernel 

has a larger field view and hence can capture more global 

features apart from previously captured local features using 3x3 

and 5x5 filters. During detailed ablation studies, it is found that 

the training procedure and model stability are improved by the 

continued assistance of the SELU (instead of RELU) activation 

function with self-normalization. In order to enhance its capacity 

for generalization and guarantee resilience against overfitting, the 

model additionally incorporates dropout layers along with Global 

average pooling (GAP) layer. 

 
Figure 13: Model-4 based on 2D CNN Architecture with three different 

filter size 

Using a more sophisticated 2D CNN architecture, Model-4 

extracts a variety of information from the spectrograms by 

employing numerous convolutional layers with different filter  

sizes. The model can efficiently learn both low-level and high-

level characteristics because to this hybrid method. To ensure 

that the model works well without overfitting and with reduced 

complexity, dropout layers with GAP layer and SELU (instead of 
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RELU) activation function are used. 

 1D CNNs are perfect for smaller datasets because they 

effectively capture temporal patterns with fewer processing 

resources, which makes them suitable for sequential data such 

as raw audio signals. They have trouble, though, detecting 

spatial correlations between frequency and time, which is 

important for tasks like sound classification. On the other 

hand, 2D CNNs do better on these tasks because they are able 

to learn intricate patterns in both the time and frequency 

dimensions. But because they need more resources and are 

more computationally demanding, training becomes slower 

and more costly, particularly when dealing with huge datasets 

or high-resolution inputs. 

The initial models consisted of several convolutional layers, 

followed by global pooling and fully connected layers. A 

common pattern across these models involved using 2D 

convolutional layers to process the spectrogram-like inputs. 

The first layer typically utilized smaller filters (e.g., 3x3) to 

extract local features, while deeper layers applied larger filters 

to capture more abstract patterns. MaxPooling or 

GlobalAveragePooling was used to reduce dimensionality, 

followed by Dropout layers to prevent overfitting and SELU 

(instead of RELU) activation function for getting more 

stability. 

1. Convolutional Layers: Different combinations of 

convolutional layers with increasing filter sizes were 

experimented with, ranging from 32 filters with 3x3 

kernels to 128 filters with 7x7 kernels.  

2. Pooling: MaxPooling and GlobalAveragePooling layers 

were tested for reducing spatial dimensions and 

improving model generalization.  

3. Dropout: A dropout rate of 0.4 was used to avoid 

overfitting.  

4. Hybrid Models: Some of the enhanced models 

incorporated hybrid strategies, such as concatenating 

outputs from multiple convolutional layers with different 

filter sizes (e.g., 3x3, 5x5, 7x7) to create more diverse 

feature representations.  

5. Batch Size: The batch was fixed to 32. 

We also explored performance of SELU activation function, 

which are known for its self-normalizing properties, in place 

of ReLU to improve model convergence and stability. 

2.4 Model Training 

The models were trained using the Adam optimizer with 

sparse categorical cross entropy loss. The training process 

included early stopping to avoid overfitting, with the model 

saving the best weights based on validation loss performance. 

Additionally, TensorBoard was used for real-time 

visualization of training metrics such as loss and accuracy. 

Data Augmentation: Instead of applying the data 

augmentation directly on raw audio features we used it in the 

feature extraction process to provide varied inputs by 

including different spectrogram representations. 

Epochs and Batch Size: Model-1 is trained for up to 1000 

epochs. Models 2-5 were trained for up to 50 epochs. All the 

models have a batch size of 32 samples. The training and 

validation sets were split using an 80-20 ratio, with 

stratification to ensure balanced representation of each class in 

both sets. 

 

3. RESULTS 

 The performance of ten distinct models, developed using 

different architectures and feature combinations, was evaluated 

using the UrbanSound8K dataset. Metrics such as accuracy, 

precision, recall, and F1-score were computed to assess 

classification effectiveness. Below, we summarize the outcomes 

and insights derived from these experiments in Table 1: 

Table 1: Accuracy, Precision, Recall, F1-score, and 

Number of Trainable Parameters of all the Models 

 

 

 

 

 

Table 2: Test Accuracy of all the Models 

 

 

 

 

 

 

 

 

 

 

From Table 1, we can infer that Model-4 performed best in 

overall precision. The Accuracy, Precision, Recall and F1-score 

of Model-1 based on 1D CNN models remain unchanged even 

when Selu activation function is introduced. While all the other 

models showed increased performance when Selu activation 

function is introduced. We got the highest test accuracy form 

Model-4 with Selu, as shown in Table 2.  

3.1 Model Performance 

Each model’s accuracy and loss were recorded during training 

and validation phases. Models employing advanced features 

like SELU activation and Dropout exhibited improved 

generalization on the test data. Figure 14 and Figure 15 shows 

that the increased performance of all proposed Models when 

Selu is applied instead of Relu. Almost in every model using 

the Selu activation function, the accuracy is increased and the 

loss is decreased.  

Model Accuracy Precision Recall F1-score Trainable 

Parameters 

Model-1 (1D CNN)       0.91 0.91  0.91 0.91 75,530 

Model-2 (2D CNN)       0.41 0.48  0.42 0.41 5,834 

Model-3 (2D CNN)       0.82 0.83  0.83 0.83 65,290 

Model-4 (2D CNN)       0.93 0.93  0.93 0.93 483,210 

Model-1 (1D CNN) 
with Selu 

      0.91    0.91  0.91 0.91 75,530 

Model-2 (2D CNN) 
with Selu 

      0.50    0.53  0.50 0.51 5,834 

Model-3 (2D CNN) 
with Selu 

      0.85    0.85  0.85 0.85 65,290 

Model-4 (2D CNN) 
with Selu 

   0.94    0.95  0.94    0.94    483,210 

Model Test 

Accuracy 

Model-1 (1D CNN) 91% 

Model-2 (2D CNN) 40.93% 

Model-3 (2D CNN) 82.08% 

Model-4 (2D CNN) 92.84% 

Model-1 (1D CNN) with Selu 91% 

Model-2 (2D CNN) with Selu 49.74% 

Model-3 (2D CNN) with Selu 84.54% 

Model-4 (2D CNN) with Selu  94.33% 
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Figure 14: Graphical representation of Model Accuracy Comparison. 

 
Figure 15: Graphical representation of Loss Comparison of the models. 

From Figure 16 we can infer that the accuracy of Model-4 

based on 2D CNN Architecture with three different filter sizes 

is increasing with the number of epochs. It shows the quality 

of our model during training. In Figure 17, we can see that 

both the training loss and validation loss are reducing with 

number of epochs. 

 
Figure 16: Accuracy curve of the best model Model-4 (2D CNN) with 

Selu out of all models. 

 
Figure 17: Loss curve of the best model Model-4 (2D CNN) with Selu out 

of all models. 

In Figure 18, the confusion matrix of Model-4 with Selu is 

included which shows that most of the sounds are predicted 

correctly (TP), except dog bark(10 times) and street music(14 

times) are sometimes considered as children playing. Gun shot 

has the highest percentage of TP in comparison to all the other 

classes. Gun shot is only one time considered as jackhammer, 

otherwise it is predicted correctly in all the other cases. 

 
Figure 18: Confusion Matrix of our best model (Model-4 with Selu). 

Results were visualized to compare the performance across 

models. Key findings include:  

1. The enhanced architectures with Selu activation function 

consistently outperformed baseline models.  

2. Training curves revealed that regularization strategies 

effectively mitigated overfit ting. 

3.2 Comparison with Previously Studied models 

Baseline models (Model-1 to Model-4) achieved moderate 

performance, highlighting the effectiveness of simple 

architectures for audio classification tasks. It is also observed 

that using Selu improved performance of Models-4, achieving 

the highest test accuracy of 94.33% on the test dataset. The 

performance of finally selected proposed model Model-4 with 

Selu is also compared with existing works on the same 

dataset. Table 3 shows the detailed comparison of the 

proposed Model-4 with Selu and 4 different selected features 

(MFCC, Mel-spectrogram, Spectral contrast, Chroma feature) 

with other existing works in terms of classification accuracy. 

It can be seen that proposed model outperformed the previous 
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studies (refer Table 3).  

Table 3: Comparison of Different Models with Our Study. 

 

4. CONCLUSION AND FUTURE SCOPE 

In this study, various custom 1D and 2D CNN models are 

studied along with four different feature extraction methods. 

We used only one type of 1D CNN with relu and selu 

activation functions along with only MFCC features, both 

giving almost the same type of results. Whereas three types of 

2D CNNs with progressively increasing f ilter size is used in 

each consecutive convolution along with relu and selu 

activation function with all four feature extraction methods, 

namely MFCC, Chroma stft, Mel spectrogram and Spectral 

contrast. During ablation studies, it was found that Model-4 

with three 2D convolutional layers, each layer using different 

filter sizes and selu activation function, provides good test 

accuracy of 94.33%. Finally, from the above results, we can 

say that increasing the type of feature extraction methods and 

using concatenation of parallel convolutions having various 

filter sizes and Selu activation function can increase the 

performance of 2-D CNN architecture based DL frameworks 

for Urban Sound Data Classifications. In future, we will 

explore the concatenation of various features and novel CNN 

architectures in order to get more prominent features of audio 

files for classifications. 
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