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ABSTRACT

In this work, we will study and analyze the performance of Convolutional Neural Networks (CNN) based techniques for sound
classification which may help in case of urban surveillance applications. Recently, many researchers have used different feature
extraction techniques along with different machine learning (ML) techniques to classify urban sound. Deep learning (DL) models like
VGG-16, AlexNet, GoogleLeNet have also been explored in this direction effectively. In this research work, we proposed various
custom designed 1D and 2D CNN models along with different extracted features like; Mel Frequency Cepstral Coefficients (MFCC),
Chroma short-time Fourier transform (Chroma stft), Mel-spectrogram, and Spectral Contrast for urban sound classification. Detailed
ablation studies were carried out with respect to different filter sizes, number of convolutional layers, and various activation functions
to obtain state-of-the-art performances on the standard urban sound dataset. The experimental results show better performances with
our custom CNN models compared to the classification models proposed in the existing recent literature works.
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1. INTRODUCTION

Sound classification tasks are useful in very diverse fields
such as Security and Surveillance, Healthcare, Agriculture,
Environmental Monitoring, Robotics, Education and Learning,
Speech and Audio Processing, Industrial Applications, Smart
Homes, Autonomous Vehicles, etc. With the expansion of
cities, approximately 80% of the human population will live in
cities by 2050. The cities will be well covered with various
sensors and monitoring tools. With the growth of urbanization,
the web of CCTV cameras is also expanding [1]. Most of the
cameras are for video recording only. But very few of them
are able to capture sounds. The video-only-camera can
become useless if something happens which cannot be
captured in a camera like a gunshot. So, we need cameras
which can also record audio along the video for doing audio
classification in real time. Suppose a person is shooting a gun
and covering the gun with a bag, then the cameras would not
recognize the gun shot. But if sound was recorded along with
the video, then we can easily detect the gun shot. Secondly,
distant things such as fighter jet cannot be easily detected by
the image classification techniques. This will make the image
classification technique confuse between a bird and the fighter
jet. The detection of fighter jet like things make a lot of noise
which is not possible for a bird to make. This way we can
easily detect hidden or distant things which make a lot of noise
in a very efficient way. Classification of Urban Sound will
play a major role in the surveillance of our cities [2] in near
future.

Any sound can be categorized into various class of sounds
based on its acoustic features. Recently, many researchers
explored various acoustic feature extraction techniques along
with machine learning (ML) and Deep learning (DL)
techniques for classification of urban sounds effectively [3]. In
these works, many feature extraction techniques like Mel
Frequency Cepstral Coefficients (MFCC) [4, 5], Log-Mel
spectrogram [1, 4], Spectral Contrast, Chroma stft (short-time

fourier transform) are employed to extract the important, detailed
and prominent features from the sound data using Python Librosa
library. After the feature extraction of the recordings, any ML
technique such as K-Nearest Neighbour (KNN), random forest,
Support Vector Machine (SVM), Principle Component Analysis
(PCA) [1] or deep learning techniques such as DenseNet [12],
VGG-16, VGG-19, AlexNet, etc. or combination of any of these
can be employed for doing the audio classification task. Now-a-
days, different types of models are being used for this task of
audio classification. This includes long short-term memory
(LSTM) networks [1], convolutional neural networks (CNNSs)
[6], artificial neural networks (ANNS), bidirectional LSTM
(BILSTM) networks [5], Recurrent Neural Networks (RNN) [6]
and many more.

Author in [7] used MFCC for feature extraction and a very
basic custom CNN model to classify the environmental sounds
with an accuracy of 64.5%. In 2019, Abdoli et. al. [8] suggested
using 1D CNN as it can take direct input from the audio signal. It
can also work with varying length input with the use of sliding
window showing and accuracy of 89%. Mushtaq et. al. [9]
proposed the aggregation of both Mel spectrogram and Log-Mel
spectrogram features and DenseNet-161 model. In [10], the
author discussed performances of various ML techniques like
Hidden Markov Models (HMM), Decision Trees (DT), K-NN
and SVM for sound data classifications. He also discussed DL
techniques like, CNN, Multilayer Perceptron (MLP), Deep
Neural Networks (DNN), and Recurrent Neural Networks (RNN)
for sound data classifications. Author in [11] did a systematic
literature review (SLR) to evaluate small dataset through data
augmentation in order to increase the dataset. The author in ref.
[12] used spectrogram images of the audio from ESC-50 and
ESC-10 dataset to achieve an accuracy of 49% and 77% with
CNN and achieved an accuracy of 56% on ESC-10 in tensor
deep stacking network (TDSN).

In [13], the author first converted the audio signal into some
suitable form using some signal representation techniques
such as spectrograms, MFCC, wavelet decom position and
linear predictive coding. After this, the author used five
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different type of neural networks for the audio classification
tasks, namely CNNs, Autoencoders, Transformers,
Recurrent Neural Networks (RNNs) and Hybrid Models
(CNN-RNN and CNN-Support Vector Machine). The
author in [14] studied to identify both the recording device
and the environment in which it is recorded. The author
used 3 different environments (very quiet, quiet and noisy),
4 classes of recording devices and 136 speakers (68 male
and female each), and 3600 recordings of sentences, words
and continuous speech using CRNN (CNN+RNN). Sound
classification using Mel spectrogram as feature extraction
method and LSTM is explored in the study [15]. In [16], the
author used MFCC as feature extraction method and a
combination of three convolutional layer, three pooling
layers, LSTM and flattening of the output and achieved an
accuracy of 93.58% on UrbanSound8K dataset.

A combination of deep feature extraction, random
subspaces K Nearest Neighbour (KNN) classifier and a
custom CNN model is studied by the authors in [17]. The
author in [18] used a combination of different feature
extraction methods, consisting MFCC, Gammatone
Frequency Cepstral Coefficients (GFCC), Constant Q-
transform (CQT) and Chromagram in the deeper CNN
(DCNN) achieving an accuracy of 97.52% on
UrbanSound8K, 94.75% on ESC-10, and 87.45% on ESC-
50. The author in [19] specially created manufacturing
sound dataset (e.g. filing, hammering) and used a CNN,
which receives log-Mel spectrograms of the sounds as
input. The validation accuracy achieved was close to 100%
displays an almost error-free performance; furthermore, the
model converges very quickly to a stationary solution and
also has very low validation loss. The study in [20] talks
about determining the source of a weak sound, particularly
in a busy or noisy surroundings and proposed a new
attention-based context-aware neural network for weak
environmental source classification. In [9], the model is
based on simple log-power Short Time Fourier Transform
(STFT) spectrograms and com bines them with several
well-known approaches from the image domain (i.e.,
ResNet, Siamese-like networks and attention) achieving an
accuracy of 97.0% (ESC-10), 91.5% (ESC-50) and 84.2% /
85.4% (US8BK mono / stereo). Another study on
Environment Sound Classification Task (ESC) is conducted
by Igbal et. al. [21] where the MFCC is used for feature
extraction and we evaluate the use of CNN and multiple
ML models to classify the sound signal using spectrograms
of the sound spectrum. A study is conducted by Bensakhria
et. al. [22] to detect domestic violence using classification
of audio using 1D-CNN which outperformed -classic
machine learning-based models with 91.45% accuracy.
Author in ref. [23] presents his own sound database
recorded (NoisenseDB) in an urban environment and by
using three DNN classifier he achieved 82%, 70% and 64%
accuracy respectively.

Also, there is a large scarcity of labeled dataset in this
domain. For e.g. Environ mental Sound Classification
(ESC) dataset [24] consists of the sounds which can be
easily available in our surroundings such as animal noise,
traffic noise, human speech, etc. The sounds which are
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captured in a recording taken from an urban area are
considered as Urban Sounds which includes sound samples
like gun shot, siren, car horn, street music, dog bark, etc. The
UrbanSound8K dataset contains most of these Urban Sounds
[5]. Most of the above discussed works are either based on
single feature analysis like MFCC [25] or GFCC [26],
however considering various features may enhance feature
extraction and analysis stages.

In this research work, we proposed various custom designed
1D and 2D CNN models along with different extracted
features like; Mel Frequency Cepstral Coefficients (MFCC),
Chroma short-time fourier transform (Chroma stft), Mel-
spectrogram and Spectral Contrast for urban sound
classification. A detailed ablation studies carried out by
progressively expanding filter size in each consecutive
convolution layer along with concatenation of various
convolutional layers, using and various activation functions to
get state of arts performances on standard urban sound dataset.
Experimental results show better performances with our
custom CNN models when compared to classification models
proposed in existing recent literature works. The rest of the
paper is organized as: Section 1 gives introduction with
existing literature survey in detail. Section 2 explains proposed
methodology. Section 3 gives details of experimental results
and ablation studies performance comparisons. Section 4
concludes the findings.

2.METHODOLOGY

2.1 Dataset

The dataset used in this study is the UrbanSound8K dataset,
which contains 8,732 labeled audio samples spanning 10
environmental sound classes. These include sounds such as dog
barking, sirens, and street music, among others. The audio files
are sampled at a 22,050 Hz sampling rate, and each file is
assigned to one of the predefined classes. The class distribution
of the dataset is shown in Figure 1.

Class Distrnibution of the UrbenSoungBX Dataset

Figure 1: Class Distribution of the UrbanSound8K Dataset

2.2 Preprocessing

While processing audio segments, it is necessary to make length
of all the audio segments of the same length. To resize them, we
need to use padding which involves adding silence periods of
zero values. To prepare the dataset for machine learning models,
the audio samples were first pre-processed by extracting multiple
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audio features. We utilized the following feature extraction

techniques:

2.2.1 Mel-Frequency Cepstral Coefficients (MFCCs)

MFCC is commonly used feature in audio classification that
captures the timbral texture of sound. These coefficients are
derived from the Mel Spectrogram by applying a discrete
cosine transform (DCT). The process starts by converting
the audio signal into a Mel Spectrogram, then performing a
logarithmic operation and a DCT to reduce the
dimensionality. If X (¢, f) represents the spectrogram, h,,(f)
is the Mel filter bank, and M is the number of filters then,

MFCC,(t) = z.log ZlX(t,f) - h (I
m=0 f=0

represents MFCC coefficients.

Figure 2 and Figure 3 shows MFCC representations for
sample audio files of Gun Shot and Siren respectively.

!

Figure 2: MFCC Representation of Sample: Gun Shot

i

Figure 3: MFCC Repreéentation of Sample: Siren

2.2.2 Chroma STFT Feature

Chroma STFT feature represents the twelve different pitch
classes in a signal, useful for capturing harmonic content. If
X(t, f) is the spectrogram at time ¢t and frequency f, N is
the number of frequency bins, and w(k) is the weighting
function, then

Chroma(t, f) = Z X(t, f + k) - w(k)
k=0

represents Chroma STFT. Figure 4 and Figure 5 shows
Chroma Spectrograms for sample audio files of Gun Shot
and Siren respectively.

Figure 5: Chroma Representation of Sample: Siren
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2.2.3 Mel Spectrogram

Mel spectrogram emphasizes lower frequencies and captures
features useful for environmental sound classification. Mel
Spectrogram is given as:

M(f) = 2595log,, (1 +%)
where f is the frequency in Hz and M (f) is the corresponding
Mel frequency. Figure 6 and Figure 7 shows Mel Spectrogram
for sample audio files of Gun Shot and Siren respectively.

Figure 6: Mel Spectrogram for sample: Gun Shot

Figure 7: Mel Spectrogram for sample: Siren

2.2.4 Spectral Contrast

Spectral Contrast feature measures the difference in amplitude
between peaks and valleys in a sound spectrum, which is
particularly useful for identifying different sound textures. If
P; represents the power in the i-th subband and N is the total
number of subbands, then

&P
S. = Z.log( gl
=1
represents Spectral Contrast.

Figure 8 and Figure 9 shows Spectral Contrast Spectrograms
for sample audio files of Gunshot and Siren, respectively.

Figure 8: Spectral Contrast for sample audio: Gun Shot

Figure 9: Spectral Contrast for sample audio: Siren

For each audio file, all above four different features (MFCC,
Chroma stft, Mel spectrogram, and Spectral Contrast) were
extracted, and the resulting feature arrays were padded or
truncated to a fixed length of 174 time steps to ensure
consistency across all samples. The feature arrays were then
concatenated to form a single feature vector for each audio
clip. This feature vector was used as the input to the
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2.3 Model Architecture

We experimented with various Deep Learning (DL) models to
classify sounds, with a focus on CNN architectures, which are
well suited for extracting spatial patterns from data like
spectrograms. We experimented with the performances of the
following custom CNN models (Models 1-4) while comparing
both Rectified Linear Unit (Relu) and Scaled Exponential
Linear Unit (Selu) activation functions.

Model-1 as shown in Figure 10 is based on 1D CNN
architecture, which is perfect for sequential data like raw audio
signals since its convolutional layers handle the audio input in
a one-dimensional manner. The SELU activation function,
which normalizes activations across layers, is incorporated
into the model to help with greater generalization and faster
convergence. To ensure that the model performs effectively
when applied to unseen data, dropout layers are used to
prevent overfitting. Although 1-D CNN architectures provide
less number of trainable parameters and lower computational
complexity; 2-D CNN architectures not only exhibit high pre
diction performances, but also are effective for capturing both
spatial and temporal dependencies.

Figure 10: Model-1 based on 1-D CNN Architecture

In order to analyze spectrogram-like inputs, where both time
and frequency dimen sions are important, Model-2 uses a 2-D
CNN architecture as shown in Figure 11. To capture the
spatial correlations between time and frequency components,
the model makes use of 2-D convolutional layers. The SELU
activation function is used to increase the convergence and
stability of the model. Dropout layers are used to prevent over
f itting. During detailed ablation studies, it is found that the
accuracy of this Model is still less compared to previous 1-D
architectures as only one convolutional layer with 3x3 filter
sized is used which was not capable of capturing essential
features of input data.

Figure 11: Model-2 based on 2D CNN Architecture

Hence, Model-3 based on 2D CNN architecture with two
different convolutional layers, each using different filter sizes
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(3x3 and 5x5) as shown in Figure 12 is analyzed. Here, 8 3x3
filter being a small kernel size have a smaller receptive field and
hence can extract small complex features. While, 5x5 being a
mid-sized kernel has a large field view and hence can capture
more global features. Finally, the output of both convolutional
layers are concatenated to get good presentation of input features.
During detailed ablation studies, it is found that the accuracy of
this Model-3 with SELU (instead of RELU) activation function
is enhanced more compared to Model-2.
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Figure 12: Model-3 based on 2D CNN Architecture with two different filter
sizes

With a deeper network and bigger filter sizes, Model-3 goes
beyond the 2D CNN technique to catch more intricate patterns in
the input spectrograms as shown in Figure 13. Model-3 uses
three different convolutional layers, each using different filter
sizes (3x3, 5x5 and 7x7). Here, 7x7 being a large-sized kernel
has a larger field view and hence can capture more global
features apart from previously captured local features using 3x3
and 5x5 filters. During detailed ablation studies, it is found that
the training procedure and model stability are improved by the
continued assistance of the SELU (instead of RELU) activation
function with self-normalization. In order to enhance its capacity
for generalization and guarantee resilience against overfitting, the
model additionally incorporates dropout layers along with Global
average pooling (GAP) layer.
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Figure 13: Model-4 bésed on 2D CNN Architecture with three different
filter size

Using a more sophisticated 2D CNN architecture, Model-4
extracts a variety of information from the spectrograms by
employing numerous convolutional layers with different filter

sizes. The model can efficiently learn both low-level and high-
level characteristics because to this hybrid method. To ensure
that the model works well without overfitting and with reduced
complexity, dropout layers with GAP layer and SELU (instead of
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RELU) activation function are used.

1D CNNs are perfect for smaller datasets because they
effectively capture temporal patterns with fewer processing
resources, which makes them suitable for sequential data such
as raw audio signals. They have trouble, though, detecting
spatial correlations between frequency and time, which is
important for tasks like sound classification. On the other
hand, 2D CNNs do better on these tasks because they are able
to learn intricate patterns in both the time and frequency
dimensions. But because they need more resources and are
more computationally demanding, training becomes slower
and more costly, particularly when dealing with huge datasets
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3.RESULTS

The performance of ten distinct models, developed using
different architectures and feature combinations, was evaluated
using the UrbanSound8K dataset. Metrics such as accuracy,
precision, recall, and Fl-score were computed to assess
classification effectiveness. Below, we summarize the outcomes
and insights derived from these experiments in Table 1:

Table 1: Accuracy, Precision, Recall, F1-score,
Number of Trainable Parameters of all the Models

and

or high-resolution inputs. Model Accuracy Precision Recall Fl-score ;;?;rr]r?gtfrs
The initial models consisted of several convolutional layers, Model-1 (1D CNN) 0.91 0.91 0.91 0.91 75,530
followed by global pooling and fully connected layers. A Model-2 (2D CNN) 0.41 0.48 0.42 0.41 5,834
common pattern across these models involved using 2D Model-3 (2D CNN) 0.82 0.83 0.83 0.83 65,290
convolutional layers to process the spectrogram-like inputs. Model-4 (2D CNN) 0.93 0.93 0.93 0.93 483,210
The first layer typically utilized smaller filters (e.g., 3x3) to Model-1 (1D CNN) 0.1 091 0.91 0.91 75,530
extract local features, while deeper layers applied larger filters "I\‘,’I'(t)zesfz'“(m CNN) 050 053 050 051 5,834
to capture more abstract patterns. MaxPooling or with Selu

GlobalAveragePooling was used to reduce dimensionality, Model-3 (2D CNN)  0.85 0.85 0.85 0.85 65,290
followed by Dropout layers to prevent overfitting and SELU ",\‘;I'ct)zesli:”(m CNN) 094 095 004 094 483,210
(instead of RELU) activation function for getting more with Selu

stability.

1. Convolutional Layers: Different combinations of
convolutional layers with increasing filter sizes were
experimented with, ranging from 32 filters with 3x3
kernels to 128 filters with 7x7 kernels.

2. Pooling: MaxPooling and GlobalAveragePooling layers
were tested for reducing spatial dimensions and
improving model generalization.

3. Dropout: A dropout rate of 0.4 was used to avoid
overfitting.

4. Hybrid Models: Some of the enhanced models
incorporated hybrid strategies, such as concatenating
outputs from multiple convolutional layers with different
filter sizes (e.g., 3x3, 5x5, 7x7) to create more diverse
feature representations.

5. Batch Size: The batch was fixed to 32.

We also explored performance of SELU activation function,
which are known for its self-normalizing properties, in place
of ReLU to improve model convergence and stability.

2.4 Model Training

The models were trained using the Adam optimizer with
sparse categorical cross entropy loss. The training process
included early stopping to avoid overfitting, with the model
saving the best weights based on validation loss performance.
Additionally, TensorBoard was used for real-time
visualization of training metrics such as loss and accuracy.

Data Augmentation: Instead of applying the data
augmentation directly on raw audio features we used it in the
feature extraction process to provide varied inputs by
including different spectrogram representations.

Epochs and Batch Size: Model-1 is trained for up to 1000
epochs. Models 2-5 were trained for up to 50 epochs. All the
models have a batch size of 32 samples. The training and
validation sets were split using an 80-20 ratio, with
stratification to ensure balanced representation of each class in
both sets.

Table 2: Test Accuracy of all the Models

Model Test
Accuracy

Model-1 (1D CNN) 91%
Model-2 (2D CNN) 40.93%
Model-3 (2D CNN) 82.08%
Model-4 (2D CNN) 92.84%
Model-1 (1D CNN) with Selu 91%
Model-2 (2D CNN) with Selu 49.74%
Model-3 (2D CNN) with Selu 84.54%
Model-4 (2D CNN) with Selu 94.33%

From Table 1, we can infer that Model-4 performed best in
overall precision. The Accuracy, Precision, Recall and F1-score
of Model-1 based on 1D CNN models remain unchanged even
when Selu activation function is introduced. While all the other
models showed increased performance when Selu activation
function is introduced. We got the highest test accuracy form
Model-4 with Selu, as shown in Table 2.

3.1 Model Performance

Each model’s accuracy and loss were recorded during training
and validation phases. Models employing advanced features
like SELU activation and Dropout exhibited improved
generalization on the test data. Figure 14 and Figure 15 shows
that the increased performance of all proposed Models when
Selu is applied instead of Relu. Almost in every model using
the Selu activation function, the accuracy is increased and the
loss is decreased.
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Figure 14: Graphical representation of Model Accuracy Comparison.
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From Figure 16 we can infer that the accuracy of Model-4
based on 2D CNN Architecture with three different filter sizes
is increasing with the number of epochs. It shows the quality
of our model during training. In Figure 17, we can see that
both the training loss and validation loss are reducing with
number of epochs.
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Figure 16: Accuracy curve of the best model Model-4 (2D CNN) with
Selu out of all models.

© 2025 IJRTI | Volume 10, Issue 6 June 2025 | ISSN: 2456-3315

Loss

Train Loss
Validation Loss

os

<0

0.4 1

0.2 4

(] 10

Figure 17: Loss curve of the best model Model-4 (2D CNN) with Selu out
of all models.
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In Figure 18, the confusion matrix of Model-4 with Selu is
included which shows that most of the sounds are predicted
correctly (TP), except dog bark(10 times) and street music(14
times) are sometimes considered as children playing. Gun shot
has the highest percentage of TP in comparison to all the other
classes. Gun shot is only one time considered as jackhammer,
otherwise it is predicted correctly in all the other cases.

Confusion Matrix
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Figure 18: Confusion Matrix of our best model (Model-4 with Selu).

Results were visualized to compare the performance across
models. Key findings include:

1. The enhanced architectures with Selu activation function
consistently outperformed baseline models.

2. Training curves revealed that
effectively mitigated overfit ting.

regularization strategies

3.2 Comparison with Previously Studied models

Baseline models (Model-1 to Model-4) achieved moderate
performance, highlighting the effectiveness of simple
architectures for audio classification tasks. It is also observed
that using Selu improved performance of Models-4, achieving
the highest test accuracy of 94.33% on the test dataset. The
performance of finally selected proposed model Model-4 with
Selu is also compared with existing works on the same
dataset. Table 3 shows the detailed comparison of the
proposed Model-4 with Selu and 4 different selected features
(MFCC, Mel-spectrogram, Spectral contrast, Chroma feature)
with other existing works in terms of classification accuracy.
It can be seen that proposed model outperformed the previous
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studies (refer Table 3).

Table 3: Comparison of Different Models with Our Study.

Publishing Year Preprocessing/Feature Extraction Model Accuracy Remarks
2020 [27] MFCC Baseline 71% Accuracy is low
0,

2020[27] MFCC DenseNet 81% DenseNet network is better than baseline
network

2020 [27] GFCC DenseNet 78.27% GFCC performed inferior to MFCC

2020 [27] MFCC 2-DenseNet 82.17% Used improved form of DenseNet

2020 [27] GFCC 2-DenseNet 79.57% GFCC performed inferior to MFCC

2020 [27] MFCC+ GFCC 2-DenseNet 82.75% MFCC and GFCC combinedly extracted more
features.

2020 [27] [MFCC, GFCC] D-2-DenseNet 84.83% Used more advanced model than DenseNet and 2-
Densenet

2021 [26] Mel scale cepstral analysis (MEL) CNN 87.15% Tried a new feature extracton method.

2021 [28] Mel scale cepstral analysis (MEL) LSTM 90.15% Using LSTM instead of CNN increased the
accuracy.

2023 [29] Data augmentation, MFCC  CNN 91% Data augmentation helped the model to train for
more number of epochs.

2024 [16] MFCC CRNN 93.58% Accuracy can be increased by using aggregation of

2024 (Our study: Model-4 MFCC, Mel-spectrogram, Spectral
with Selu) contrast, Chroma features

Custom CNN model with 94.33%
concatenation of Triple

more feature extraction methods.
High test accuracy, minimal training and validation
loss.

Convolution and Selu
activation function

4. CONCLUSION AND FUTURE SCOPE

In this study, various custom 1D and 2D CNN models are
studied along with four different feature extraction methods.
We used only one type of 1D CNN with relu and selu
activation functions along with only MFCC features, both
giving almost the same type of results. Whereas three types of
2D CNNs with progressively increasing f ilter size is used in
each consecutive convolution along with relu and selu
activation function with all four feature extraction methods,
namely MFCC, Chroma stft, Mel spectrogram and Spectral
contrast. During ablation studies, it was found that Model-4
with three 2D convolutional layers, each layer using different
filter sizes and selu activation function, provides good test
accuracy of 94.33%. Finally, from the above results, we can
say that increasing the type of feature extraction methods and
using concatenation of parallel convolutions having various
filter sizes and Selu activation function can increase the
performance of 2-D CNN architecture based DL frameworks
for Urban Sound Data Classifications. In future, we will
explore the concatenation of various features and novel CNN
architectures in order to get more prominent features of audio
files for classifications.
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