Experimental investigation of self-curing concrete by using internal curing agent-PEG (polyethylene glycol 400)

Ankur Sahu¹, Anurag Tripathi², Dharmpal Chaudhary³, Mukul vishwakarma⁴, Shrishti Pandey⁵

¹Assistant professor, Department of Civil Engineering, Bansal institute of Engineering and Technology, Lucknow.

2,3,4,5, B.Tech student, Department of Civil Engineering, Bansal institute of Engineering and Technology, Lucknow.

Abstract - The aim of this investigation is to study the strength and durability properties of concrete using water-soluble Polyethylene Glycol as self-curing agent. The function of self-curing agent is to reduce the water evaporation from concrete, and hence they increase the water retention capacity of concrete compared to the conventionally cured concrete. The experiments are designed by adding a shrinkage admixture (POLYETHYLENE GLYCOL-400) at different percentages such as ee 0.5, 1, and 1.5 of cement content. In this study, compressive strength of concrete containing self-curing agent is investigated and compared with those of conventionally cured concrete. It is found through this experimental study that concrete cast with Polyethylene Glycol as self-curing agent is stronger than that obtained by sprinkler curing as well as by immersion curing. The mechanical properties like compressive strength are studied. The test results were studied at inside the lab for air curing. The optimum dosage of PEG-400 for maximum strengths was found to be 1.5 percentages.

keywords - Self-curing concrete; internal curing; Polyethylene-glycol(400); Compressive Strength

I. Introduction

Concrete is a composite construction material composed of cement (commonly Portland cement) and other cementitious materials such as fly ash and slag cement, aggregate (generally a coarse aggregate made of gravels or crushed rocks such as limestone, or granite, plus a fine aggregate such as sand), water, and chemical admixtures. The word concrete comes from the Latin word "concretus" (meaning compact or condensed), the perfect passive participle of "concresco", from "com-" (together) and "Cresco" (to grow). Concrete solidifies and hardens after mixing with water and placement due to a chemical process known as hydration. The water reacts with the cement, which bonds the other components together, eventually

creating a robust stone- like material. Concrete is used to make pavements, pipe, architectural structures, foundations, and motorways/roads, bridges/overpasses, parking structures, brick/block walls and footings for gates, fences and poles. Concrete is used more than any other man-made material in the world.

Proper curing of concrete structures is important to meet performance and durability requirements. In conventional curing this is achieved by external curing applied after mixing, placing and finishing. Curing is the process of controlling the rate and extent of moisture loss from concrete during cement hydration. It may be either after it has been placed in position (or during the manufacture of concrete products), thereby providing time for the hydration of the cement to occur. Since the hydration of cement does take time – days, and even weeks rather than hours – curing must be undertaken for a reasonable period of time.

Curing has a strong influence on the properties of hardened concrete; proper curing will increase durability, strength, water tightness, abrasion resistance, volume stability, and resistance to freezing and thawing and deicers. In addition to the normal concrete mix some additional compounds like Polyetheline glycole (PEG) in proper dosage and materials such as fly ash is used to increase the durability and strength of the concrete mix.

Internal curing is an effective method for improving performance of low water –cement ratio and low permeability concrete because they require additional water to hydrate Cementation materials. In case of external curing (membrane curing) the impermeable coating of the compound is formed on the surface and water loss due to evaporation is controlled to maximum extent. These methods are useful in dry areas where water scarcity's more.

OBJECTIVE

- 1. To study in detail concept of self-curing of concrete
- 2. To study the use of water soluble polyethylene glycol (PEG) in concrete for self-curing.
- 3. To study the compressive strength, water retention by varying the percentage of PEG from 0% to 1.5% by weight of cement for self-compacting concrete and compare it with conventional concrete. 4. Result and recommendation based on above study

FUTURE SCOPE

- 1. To increase durability of structure.
- 2. To avoid cracks in concrete.
- 3. To reduce curing & water demand cost.

LITERATURE REVIEW

Table 1: Literature Review

SR.NO	TITLE OF	OF AUTHOR VOLUME		DELIVERABLE	
	PAPER		NUMBER		
1	Strength	1) M.V.Jagannadha	ISSN:	In this paper author study self-curing	
	characteristics of self- curing	Kumar	2319-1163	concrete using Polyethylene-glycol- 400 at various percentage such as	
	concrete	2) M. Srikanth		0%,,0.5%,1%, 2% of cement content.	
2	Experimental study	1) K.Nithya	ISSN:	The author study involves the use of	
	on self- curing concrete	2) K.Ranjit ha	2395-0072	shrinkage reducing admixtures in concrete which helps in self- curing and helps in better hydration and hence strength.	
3	An Experimental	1) Akshara O.S	ISSN:	In this paper author study, the	
		2)Divyasasi	2229-5518	mechanical properties of concrete	
	Mechanical			containing selfcuring agent is	
	Proper-ties of Self			investigated and compared with chose	
	Curing Concrete			of conventionally cured concrete. And	
	41			he conclude the optimum dosage of	
			RT	PEG-400 for maximum strengths be 1%.	
4	Experimental study of self-Compacting self-curing concrete	1)Dr.N.P. Rajamane 2)R. Udhayan	IJCIET	In this paper self-compacting self-curing concrete is done by using polyethylene glycol at a rate of 0%, 1%, and 2%. And author found that the optimum dosage of 1% of PEG gives higher strength.	
5	An experimental study on self Curing concrete	1) Tatineniyeswa nth Sail	ISSN: 2278621X	In this paper author study self-curing concrete using Polyethylene-glycol-400 at various percentage such as 0%,0.5%,1%,1.5%,2% of cement content.	
6	The Preliminary	1)Deshpande B. C.	ISSN:	The author examines the effect of fly	
	Test of Ingredients of Concrete Pavement Block	2)Darade M. M.	2348-7968	ash, as partial replacement to cement and dust as partial replacement to fine aggregate on the various properties of pavement block.	

	© 2023 IJK11 V			141110 10) 10040 0 1 14y 2020 100111 2 100 0010
7	Quality of Water	1)Mr. K. J.Kucche	ISSN:	This paper reviews the literature
	for Making	2)Dr. S. S. Jamkar	2250-3153	related to quality of water for making concrete.
	Concrete:A	3)Dr. P. A. Sadgir		
	Review of			
	Literature			
8	Self-Curing	1)Muddassir Bora	ISSN:	In this paper Shrinkage reducing
	Concrete	2)PMausam	2321-9939	agents and lightweight aggregates such
		Vohra		as
		3) Mohammed		Polyethylene-glycol and Leca, Silica
	A 2	Sakil Patel		fume and stone chips are used
		4) Dhruv Vyas		respectively to achieve effective curing results.

II. PROPOSED METHODOLOGY AND DISCUSSION

Flow chart of Methodology

We decide the topic self-curing concrete. For this we made the mix design for concrete of grade M25. After that we made some concrete blocks by using the self-curing agent PEG (400) and some blocks are made without using the self-curing agent. After that we conduct compressive strength test on the blocks by using the compression testing machine and determine the strength of them and compare it currently the method uses polyethylene glycol (PEG) which reduces the evaporation of water from the surface of concrete and also help in water retention

III. CONCRETE MIX DESIGN

Mix design for "M25" Grade

(a) Stipulations for Proportioning:

1. Grade designation M25

2. Type of cement OPC53grade

3. Type of admixture Polyethylene glycol-400

4. Maximum nominal size of aggregate 20mm

5. Minimum cement content 300kg/m3

6. Maximum water-cement ratio 0.5

7. Workability 100 mm (slump)

8. Exposure condition Severe (For plain Concrete)

9. Method of concrete placing Hand placing

10. Degree of supervision Good

11. Type of aggregate Sub angular aggregate

12. Maximum cement (OPC) content 394 kg/m3

(b) Test Data for Materials:

1. Cement used OPC 53 grade

2. Specific gravity of cement 3.15

3. Specific gravity of coarse aggregate 2.51

4. Specific gravity of fine aggregate 2.63

5. Water absorption

6. Sieve analysis

Coarse aggregate Nominal max Size of aggregate 20mm as per IS 383Confirming to grading Zone III Of Fine aggregate table 4 of IS-383

(c) Target Strength for Mix Proportioning

Fck = fck + t.5

T = 1.65

 $Fck = fck + (1.65 \times 5)$

28 days, Fck = Characteristics compressive strength at 28 days, And S = Standard deviation.

From Table I, Standard Deviations = $4N/mm^{2}$.

(d) Selection of Water-Cement Ratio:

From IS 456, maximum water-cement ratio 0.5 Based on experience, adopt water cement ratio as 0.45.

Hence, Ok.

(e) Selection of Water Content:

From IS Code maximum water content

For 20 mm aggregate = 186 liter (for 100 mm slump range)

Estimated water content for 75 mm slump =

 $186 \times 6 + 186$

 $100 = 197 \, \text{liter}$

(f) Calculation of Cement:

Water-cement ratio =0.5

Cement content = 394 kg/m3

From Table 5 of IS 456, minimum cement content for 'Severe' exposure conditions = 300kg/m3 394kg/m3 > 300 kg/m3 Hence, ok.

(g) Proportion of volume of coarse aggregate fine aggregate content:

volume of coarse aggregate corresponding to 20mm size aggregate and fine aggregate

(**Zone I**) For water-cement ratio of 0.5 = 0.60

Volume of fine aggregate content = 1 - 0.6 = 0.4

(h) Mix Calculations:

The mix calculations per unit volume of concrete shall be as follows:

a) Volume of concrete = 1m3

As cement is partially replaced by fly ash, initially we will go for 20% replacement

In above step so we get cement content of 394 kg/m3,20% of its replaced by fly ash i.e 79kg and cement content of 315Kg/m3

b) Volume of cement t = mass of cement X 1/1000

Specific gravity of cement

= 0.1m3

c) Volume of water = mass of water X 1/1000

Specific gravity of water

 $= 0.197 \text{m}^3$

d) Volume of all in aggregate = a-(b+c+d)

$$= 1 - (0.1 + 0.037 + 0.197)$$

 $= 0.666 \text{m}^3$

e) Mass of coarse aggregate = e X Volume of coarse aggregate X Specific gravity of coarse aggregate

$$= 0.666 \times 0.6 \times 2.63 \times 1000$$

$$= 1051 \text{ Kg}$$

f) Mass of fine aggregate =

e X Volume of coarse aggregate X Specific gravity of coarse aggregate X 1000

= 668.664 Kg

Material required for M25 grade concrete per one cubic meter quantity:

Mix Proportion for Mix A.

Table 2: Mix Proportion for Mix A

		Cement	Fine aggregate	Coarse aggregates	Water
MIX A	Quantity Of material	315	669	1051	197
	Mix proportion	1.00	2.12	3.33	0.63

Quantities of Each Mould in kg:

Mix proportions of M25 grade: 1:1:2

Water cement ratio = 0.5

Specific gravity of cement = 3.15

Specific gravity of fine aggregate = 2.51

Specific gravity of coarse aggregate =

2.63

 $V = volume of each cube = 0.15 \times 0.15 \times 0.15 = 3.375 \times 10-3m3$

For cubes:

Cement =1.06kg

Coarse aggregate =3.55kg

Fine aggregate =2.26kg

Water = 0.66liter

Quantities of addition of PEG-400 to the concrete mix:

PEG -400 is the shrinkage admixture which gives more strength when those are added to the concrete than normal concrete mix. PEG-400 is added to the concrete mix in the proportion of **0.5**, **1**, **1.5** percentage of the weight of concrete.

Addition of PEG-400 in proportion to the concrete mix

Percentage of PEG400 (in cement concrete)	Dry Weight of cement concrete (gram)	Weight of PEG-400 (gram)	PEG-400 (ml)
0.5	12757.5	74.98	56.55
1	12757.5	149.96	113.098
1.5	12757.5	224.95	169.65

IV. RESULT AND DISCUSSIONS

COMPRESSIVE STRENGTH VALUES FOR SELF CURIGNG CONCRETE BY USING PEG-400

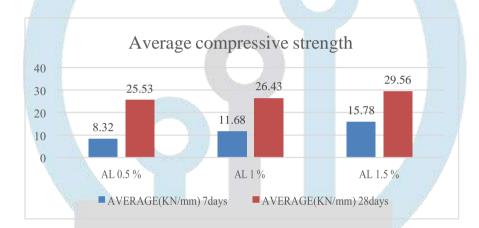
For Cubes:

7- Days compressive strength results

Table 6: 7 Days compressive strength results

DESIGNATION	BLOCK1 (KN/mm)		BLOCK3 (KN/mm)	AVERAGE (KN/mm)
AL 0.5 %	8.29	8.35	8.32	8.32
AL 1 %	11.32	12.05	11.68	11.68
AL 1.5 %	15.73	15.83	15.78	15.78

28- Days compressive strength results


Table 8: 28 Days compressive strength results

DESIGNATION	BLOCK 1 (KN/mm)	BLOCK 2 (KN/mm)	BLOCK3 (KN/mm)	AVERAGE (KN/ mm)
AL 0.5 %	24.5	23.9	22.2	23.53
AL 1 %	25.2	27.3	26.8	26.43
AL 1.5 %	29.1	30.1	29.5	29.56

Average compressive strength of cubes

Table 9: Average compressive strength of cubes

DESIGNATION	N AVERAGE	AVERAGE	
	(KN/mm)	(KN/mm)	
	7days	28days	
AL 0.5 %	8.32	25.53	
AL 1 %	11.68	26.43	
AL 1.5 %	15.78	29.56	

V. CONCLUSION

PEG-400 is added to the concrete the Workability of the concrete is increases. It is observed that the Workability increases as the dosages of PEG 400 are increased. It is observed that the Workability results for 1.5% of PEG 400 are higher compared to other dosages. The compressive strength of self-curing concrete wit 1.5% of PEG-400 has more compressive strength than other mixes as compared to conventional concrete.PEG-400 is useful to reduce and save the water on site which required for curing. It is also reduces permeability of concrete, protects reinforcing steel , increases mortar strength, increases early age strength of concrete, provides greater durability to concrete, greater utilization of cement, lower maintenance and cost effective

VI. ACKNOWLEDGEMENT

With deep sense of gratitude, we would like to thanks all the people who have lit our path with their kind guidance. We are very grateful to these intellectuals who did their best to help during our project planning work.

It is our proud privilege to express deep sense of gratitude to Prof. P. T. Kadave, Principal of K. K. Wagh Polytechnic, Nashik, for his comments and kind permission to complete this project planning work. We remain indebted to Prof. P.V.Suryawanashi Civil Department for her timely suggestion and valuable guidance.

The special gratitude goes to project guide, staff members and technical staff members of Civil Department for their excellent and precious guidance in completion of this work.

VII. REFERENCE

- [1] M.V.Jagannadha Kumar, M. Srikanth, K. Jagannadha Rao. "Strength Characteristics Of Self Curing Concrete", International Journal Of Research In Engineering And Technology.
- [2] S. Azhagarsamy, Dr. S.Sundararaman. "A Study On Strength And Durability Of Self Curing Concrete Using Polyethylene Glycol-400", International Journal Of Emerging Technology And Advanced Engineering, Volume 6, Issue 1, January 2016.
- [3] Mohan Raj A, Rajendran M, Ramesh A S, Mahalakshmi M, Manoj Prabhakar S. (2014). "An Experimental Investigation Of Eco-Friendly Self Curing Concrete Incorporated With Polyethylene Glycol". International Advanced Research Journal In Science, Engineering And Technology.
- [4] Patel Manishkumar Dahyabhai, Prof. Jayesh kumar R. Pitroda. . "Introducing The Self-Curing Concrete In Construction Industry", International Journal Of Engineering Research& Technology (Ijert) March 2014.
- [5] Stella Evangeline. "Self-Curing Concrete And Its Inherent Properties", Stella Evangeline International Journal Of Engineering Research And Applications, Issn: 2248-9622, Vol. 4,Issue 8 (Version 7), August 2014.
- [6] Sathanandham.T, Gobinath. R, Naveen Prabhu. M "Preliminary Studies Of Self Curing Concrete With The Addition Of Polyethylene" Vol. 2 Issue 11, November 2013.
- [7] K. Jagannadha Rao Et.Al, Strength Characteristics Of Self-Curing Concrete, International Journal Of Research In Engineering And Technology, Volume: 01 Issue: 01, Sep-(2012).
- [8] Dr. D.R.Bhatt, Prof.Nanak J Pamini And Dr. A.K.Verma (2013). "Comparison Of Compressive Strength Of Medium StrengthSelf-Compacted Concrete By Different Curing Techniques", International Journal Of Engineering Trends And Technology, Issn: 22315381, Volume 4.
- [9] Vinaya kvijapur, Mohammed Noorulla "An Experimental Investigation On The Behaviour Of Self-Curing Concrete Under Acidic Attack". Vol.1., Issue.3., 2013.