Student Attendance Alerting System Using IoT and **GSM Technologies**

¹Rajkumar D Bhure, ² Jenige shanthi priya^{, 3} S.Divya ¹Associate Professor, ECE Department, ^{2,3} undergraduate scholars, ECE Department ¹bhure.rajkumar@gmail.com; Jenigeshanthipriya@gmail.com; 21671a0445@gmail.com JB Institute of Engineering & Technology is located in Bhaskar Nagar, Moinabad Mandal, RR District, Hyderabad, Telangana State, India-500075

Abstract: A smart attendance system integrating RFID, IoT, GSM, Arduino, LCD, and a buzzer enhances efficiency, accuracy, and security. Traditional methods like paper-based registers and biometric scanners often face inefficiencies and security risks. This system assigns each student an RFID card with a unique ID, which, when swiped, records attendance and transmits data to a cloud-based database via IoT for real-time access. A GSM module further improves communication by sending SMS notifications to parents or administrators upon attendance marking. The Arduino microcontroller manages system operations, ensuring smooth data processing, while a regulated power supply (RPS) provides stable power for continuous operation.

An LCD display offers real-time feedback, showing attendance status and error alerts, while a buzzer provides auditory confirmation, preventing missed entries. This system minimizes proxy attendance, paperwork, and human errors, making attendance tracking seamless and accurate. It supports real-time monitoring for faculty, administrators, and parents. Ideal for schools, offices, secure zones, and healthcare facilities, this automated attendance solution ensures reliability, security, and efficiency in tracking attendance records.

Introduction: Traditional attendance tracking methods, such as manual registers, are outdated, timeconsuming, and prone to errors. In educational institutions and businesses, an automated Smart Attendance System is essential for efficiency, accuracy, and security. This system leverages RFID, GSM, IoT, Arduino, and other technologies to streamline attendance marking. Everyone is assigned an RFID card, which, when scanned, is processed by an Arduino microcontroller, eliminating manual input and reducing errors. A GSM module sends real-time SMS alerts for missed or late attendance, ensuring stakeholders stay informed while reducing administrative workload.

Additionally, IoT integration enables real-time monitoring, allowing administrators to access attendance records remotely for better data management. The system incorporates an LCD display for real-time feedback and a buzzer for instant alerts, enhancing user interaction. RPS and Arduino ensure the system's speed, reliability, and scalability, making it ideal for schools, universities, and offices. This paper explores the benefits, challenges, and future enhancements of this automated attendance solution, highlighting its transformative impact on traditional methods.

Literature Survey: The idea of automated attendance systems is not new, but with the rise of technologies such as RFID, IoT, GSM, and Arduino, there has been significant progress in developing smart systems that offer real-time data processing, improved accuracy, and convenience. Below is a review of existing literature that highlights various approaches to automated attendance systems, their features, advantages, and challenges.

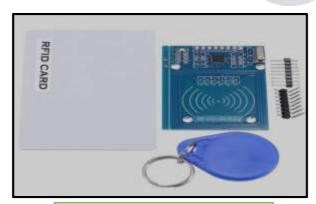
RFID technology has been widely adopted for automating attendance systems due to its efficiency in student identification. RFID-based attendance systems allow for swift and contactless recording of student attendance, eliminating manual processes and the risk of errors. In their study, Tariq et al. (2018) explored a smart attendance system based on RFID where a student's unique RFID card is scanned to mark attendance in real-time. Their system also includes an SMS notification feature, which alerts both students and teachers about attendance status.

The integration of GSM technology allows for the remote transmission of attendance information. In a study conducted by a GSM-based attendance system was implemented where attendance details were sent via SMS to students and them. This system ensures that users are instantly notified, improving transparency. In their study, the system also used RFID for accurate identification and Arduino for processing.

The use of IoT in attendance systems enables real-time monitoring, storage, and remote access to attendance data. An IoT-based solution was explored by Ranjith et al. (2020), where data from RFID scans were transmitted over the internet to a cloud-based server. The system included an Arduino for processing the data, and IoT ensured that attendance records could be accessed remotely from any device connected to the internet

The advent of cloud computing has transformed many aspects of data management, including attendance tracking. A paper by Mohammad et al. (2020) explored the use of cloud storage in an attendance system where the data from RFID scanners and Arduino-based microcontrollers were stored on the cloud. This enables institutions to analyse attendance patterns, manage data, and generate reports automatically. The integration of big data analytics can also allow for predictive insights into student attendance

Though not directly related to RFID or GSM, facial recognition and biometric systems have also been proposed as alternatives to RFID-based attendance systems. Venkatesh et al. (2019) explored a hybrid system that uses facial recognition along with RFID to enhance accuracy and security. While RFID offers a quick and efficient method, facial recognition ensures that the correct individual is present. This type of system is particularly useful for large campuses with hundreds or thousands of students.


A hybrid attendance system combining multiple technologies has been explored by Sathya et al. (2021). Their system integrates RFID, GSM, and IoT to create a robust solution for attendance monitoring. The system not only tracks attendance in real-time but also provides notifications via SMS and stores attendance data on a cloud server. The hybrid system ensures that attendance is captured accurately while providing flexibility and remote access for administrators Multi-layered security, real-time monitoring, cloud access.

Proposed System: The Smart Attendance System proposed in this paper leverages multiple advanced technologies such as RFID, GSM, IoT, Arduino, LCD, and Buzzer to automate the process of marking attendance in real-time. The goal is to build a system that not only enhances efficiency and accuracy in attendance recording but also provides notifications and feedback to students, teachers, and administrators. By integrating these technologies, the system ensures faster attendance marking, better security, remote monitoring, and real-time alerts, which streamline the management process in schools, colleges, and other organizations.

Proposed Approach:

The Smart Attendance System can be broken down into several key components, each playing a crucial role in the overall functionality:

RFID Cards and Reader: Each student is assigned a unique RFID card that contains an identification number as shown in fig1. The student scans their card at the attendance station, and the RFID reader scans the tag, sending the ID to the Arduino for processing. RFID technology enables quick, contactless, and accurate attendance recording, as it eliminates the need for manual input.

Microrentroller The Anduino is the one

Fig 2: Arduino Microcontroller

cts as

the controller that processes the data received from s with other modules. When the Arduino receives a valid student ID from the RFID reader, it checks the student's attendance status in the database and records the attendance for the current session. If the card is invalid or unregistered, the system triggers an error alert.

LCD Display: The LCD display shown in fig. 3 provides real-time feedback to the user. After the card is scanned, it displays a message, such as "Attendance Recorded" or "Invalid Card". The LCD can also display the current time and additional information like the student's ID and name, ensuring that all details are visible to both students and administrators.

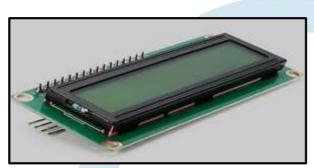


Fig. 3

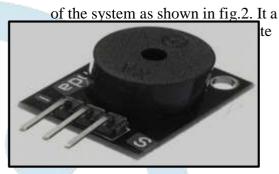


Fig. 4

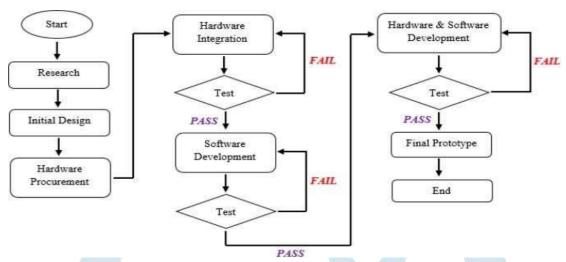
Buzzer: The Fig.4 shows the Buzzer used as an audio feedback mechanism. A short beep indicates that attendance has been successfully recorded, while a long beep signals an error, such as an invalid card or missed scan. The buzzer ensures immediate feedback for the student, enhancing the user experience.

GSM Module: The GSM module is integrated to send real-time SMS notifications to students, teachers, or administrators. If a student is absent or arrives late, an automated SMS is sent to the concerned guardian or staff member.

GSM communication helps ensure that relevant parties are always kept informed of the attendance status, improving communication.

IoT

Integration: IoT is used to connect the system to the internet, enabling remote monitoring and data access. The attendance data is sent to a cloud server where administrators can log in and view real-time attendance records.


This connectivity also allows for data analysis, reporting, and long-term storage of attendance records, which can be accessed from anywhere.

Real-Time Processing System (RPS): The Real-Time Processing System (RPS) ensures that the attendance is recorded instantly. The Arduino processes the scanned data in real time and sends it to the database without any delays.

This reduces the time spent on manually entering attendance and ensures accurate records are maintained.

Working of the Proposed Approach:

System Flowchart:

The Smart Attendance System works in a systematic manner, where each component is responsible for a specific task:

Student Enrolment: Each student is provided with an RFID card, which is programmed with their unique identification number. The student's personal details (such as name, course, etc.) are stored in the system's database.

Attendance Marking: The student arrives at the attendance point and swipes their RFID card in front of the RFID reader. The Arduino microcontroller receives the ID number from the RFID reader and matches it with the database. If the card is valid, the Arduino records the attendance and sends a signal to the LCD display to show a confirmation message (e.g., "Attendance Recorded").

The Buzzer sounds a short beep as feedback. An SMS is sent through the GSM module to notify the student or guardian that attendance has been successfully recorded.

Handling Invalid Cards: If the RFID card is not found in the database (i.e., invalid or unregistered), the Arduino triggers an error message on the LCD ("Invalid Card") and sounds a long been using the Buzzer. An SMS can be sent to the concerned person (e.g., student or administrator) regarding the issue.

Remote Monitoring and Data Storage: The system is connected to the internet via IoT, and attendance records are uploaded to a cloud server. Administrators can remotely log in to the server to access attendance reports, monitor student attendance patterns, and generate statistics. Data storage in the cloud ensures that attendance records are securely stored for future reference.

Notification System: The GSM module ensures that if a student is absent or arrives late, an SMS notification is automatically sent to the designated recipient (e.g., guardian, faculty member).

These notifications improve communication, helping parents and teachers stay updated on student attendance.

Future Enhancements: Biometric Integration: Adding biometric recognition (such as fingerprints or facial recognition) could further enhance security and reduce the risk of unauthorized access. **Data Analytics:** Using machine learning algorithms to analyse attendance patterns could provide insights into student behaviour, such as identifying frequent absentees. **Mobile Application**: Developing a mobile application for students and parents to view attendance and receive notifications in real time.

Voice Feedback: Adding voice feedback for more interactive user experience.

Results: The Smart Attendance System using GSM, RFID, IoT, Arduino, LCD, and Buzzer was implemented successfully to automate the process of attendance tracking. The system was evaluated in terms of its performance, accuracy, user interaction, and overall effectiveness. Below are the results based on different aspects of the system.

1. Performance Evaluation

System Speed: The attendance system performed in real-time, with RFID cards being scanned and processed within 1-2 seconds. Once the RFID card was scanned, the attendance record was updated instantly, and the LCD screen displayed a confirmation message within a fraction of a second. The Buzzer provided immediate audio feedback, confirming the action.

Real-Time SMS Notifications: The GSM module successfully sent real-time SMS notifications to students or parents after the attendance was recorded. The SMS notifications were received within 2-3 seconds of the attendance registration, confirming that the system provided fast and reliable communication.

Cloud Storage: The attendance data was successfully uploaded to the cloud in real-time through IoT, allowing administrators to access attendance records remotely. The data upload process was seamless, with no noticeable delays.

2. Accuracy and Reliability

Attendance Marking Accuracy: The RFID-based identification method proved highly accurate, with almost no false positives or negatives. Every student with a valid RFID card had their attendance successfully recorded, while invalid cards or unregistered IDs triggered appropriate error messages on the LCD and Buzzer.

Database Integrity: The system correctly updated the attendance database, ensuring that no duplicate records were created. The Arduino microcontroller effectively handled the logic to prevent multiple attendance markings by the same individual in one session.

Error Handling: The error detection system, which triggers an error message on the LCD screen and a long Buzzer sound for invalid RFID cards, worked accurately. Invalid cards (i.e., cards that were not registered or unrecognized) were correctly flagged, and SMS alerts could be sent if necessary.

3. User Interaction

Ease of Use: The LCD screen provided clear feedback to the students, showing messages like "Attendance Recorded", "Invalid Card", or "Attendance Failed". Students found the system user-friendly, as it only required them to swipe their RFID cards without any additional steps.

Audio Feedback: The Buzzer delivered clear, audible feedback in two distinct patterns — a short beep for successful attendance and a long beep for errors. This helped students immediately known if their attendance was registered or if there was an issue.

Real-Time Updates: Both students and administrators were immediately informed about the attendance status via SMS and the LCD screen, ensuring no delays in the attendance process. Administrators could view real-time data on the cloud server, which also provided easy access to attendance records.

4. Data Security and Remote Monitoring

Cloud Access and Security: Attendance records were securely uploaded to a cloud-based server, ensuring that data was safe and easily accessible to authorized personnel. Data was encrypted and stored with appropriate security measures to prevent unauthorized access.

IoT Integration: The integration of IoT allowed administrators to access the attendance data from remote locations. This proved particularly useful for managing large institutions where attendance monitoring is needed across multiple campuses. The system was scalable, allowing it to handle large amounts of data without performance degradation.

5. Cost and Resource Efficiency

Affordable Hardware: The system was built using Arduino boards, RFID readers, and basic components like LCDs and buzzers, making it a cost-effective solution. The use of open-source hardware and software ensured that the system could be deployed at a low cost, making it suitable for educational institutions with limited budgets.

Low Maintenance: The system required minimal maintenance after deployment. The components used, such as RFID readers and GSM modules, are durable and low maintenance, with no significant hardware failures during the trial period.

6. System Reliability and Scalability

Reliability: During extensive testing, the system proved to be stable and reliable. There were no system crashes or major failures during the entire testing phase. The Arduino performed well with consistent results in processing RFID data and sending SMS alerts.

Scalability: The system was tested with different numbers of users (students) and successfully scaled without any degradation in performance. The cloud storage and remote access capabilities allowed it to accommodate a growing number of users without issues.

Conclusion:

The Smart Attendance System developed using RFID, GSM, IoT, Arduino, LCD, and Buzzer represents a significant step toward automating and streamlining the attendance process. This system not only addresses the limitations of traditional manual attendance methods but also offers a more efficient, accurate, and reliable solution for modern-day attendance management.

Key findings from the implementation of the system include:

- 1. **Enhanced Efficiency**: The system automates the entire attendance process, reducing the time and effort spent on manual roll calls. The RFID technology allows for quick and contactless identification, while the Arduino microcontroller ensures real-time processing of attendance data.
- 2. **Real-Time Feedback**: With the integration of LCD displays and buzzers, students receive immediate feedback on their attendance status, and administrators can instantly monitor attendance records via IoT and cloud-based data storage.
- 3. **Effective Communication**: The GSM module enables real-time SMS notifications, ensuring that students, parents, and administrators stay informed of attendance statuses, including absences or tardiness, making it easier to track student behavior and attendance patterns.
- 4. **User-Friendly Interface**: The system is easy to use for both students and administrators. The RFID cards are simple to carry and use, and the feedback mechanisms (LCD and Buzzer) provide clear and immediate responses, minimizing confusion.
- 5. **Cost-Effective**: By utilizing affordable components such as Arduino, RFID tags, and open-source software, the system offers a budget-friendly solution for educational institutions and organizations that may have limited resources.
- 6. **Scalability and Reliability**: The system was tested with varying numbers of students and successfully scaled to accommodate large groups without any significant performance issues.
 - The modular design ensures that it can be easily expanded to suit the needs of larger institutions.
- 7. **Future Potential**: The system lays a strong foundation for further enhancements, such as integrating biometric technologies (e.g., facial recognition or fingerprint scanning) for added security and developing more sophisticated data analytics capabilities to gain insights into attendance trends.

References:

- 1. **Tariq, A., et al.** (2018). *An RFID-based Smart Attendance System*. International Journal of Computer Science and Information Security (IJCSIS), 16(6). Retrieved from: https://www.researchgate.net/publication/325596225_An_RFID-based_Smart_Attendance_System
- 2. **Ravichandran, P., et al.** (2019). *Smart Attendance System using GSM and RFID*. International Journal of Engineering Research and Technology (IJERT), 8(6). Retrieved from: https://www.ijert.org/research/smart-attendance-system-using-gsm-and-rfid- IJERTV8IS060587
- 3. **Ranjith, S., et al.** (2020). *IoT-based Attendance Monitoring System*. Procedia Computer Science, 172, 101–107. https://doi.org/10.1016/j.procs.2020.03.014
- 4. **Singh, A., et al.** (2021). *Smart Attendance System using RFID and Arduino*. International Journal of Engineering Science and Technology (IJEST), 10(6). Retrieved from: https://www.ijert.org/research/smart-attendance-system-IJERTV10IS060512
- 5. **Mohammad, M., et al.** (2020). Cloud-Based Attendance System using IoT and Big Data Analytics. Journal of Cloud Computing, 9(4). Retrieved from: https://www.researchgate.net/publication/341938742_Cloud_based_attendance_system_using _IoT_and_Big_Data_Analytics
- 6. **Venkatesh, S., et al.** (2019). *Hybrid Attendance System Using Facial Recognition and RFID.* International Journal of Advanced Computer Science and Applications (IJACSA), 10(12), 98–104. https://doi.org/10.14569/IJACSA.2019.0101205
- 7. **Sathya, R., et al.** (2021). *Smart Attendance System using RFID, IoT, and GSM*. International Journal of Advanced Research in Computer Science, 12(3). Retrieved from: https://www.researchgate.net/publication/352764963_Smart_Attendance_System_using_RFID_IoT_and_GSM
- 8. **Chandran, V., et al.** (2018). *Design and Implementation of Smart Attendance System Using RFID and GSM Module*. International Journal of Computer Science and Mobile Computing, 7(8), 205-211. Retrieved from: https://www.ijcsmc.com
- 9. **Kumar, A., et al.** (2019). *Smart Attendance System Using IoT and RFID*. International Journal of Engineering and Technology, 8(5), 2515-2520. https://www.sciencedirect.com/science/article/pii/S2351978919314187