© 2025 IJRTI | Volume 10, Issue 3 March 2025 | ISSN: 2456-3315

Recruitment platform: A Recommendation
System Based Job Search Webapp

TParth Amin, 2Khushboo Trivedi
Student, 2Assistant Professor
!CSE Department PIT
"Parul University, Vadodara, India
1parthamin150702@gmai|.com)

2khushboo.trivedi 21305@paruluniversity.ac.in

Abstract— The recruitment process is a crucial aspect
of human resource management, requiring efficient
methods to match job seekers with relevant opportunities.
This research presents the development of an Al-driven
recruitment platform designed to streamline candidate-
employer interactions using a recommendation system
powered by machine learning. The platform is built using
HTML, CSS, and JavaScript for the frontend, with Flask
as the backend framework, and SQLite for database
management.

The core functionality of the system lies in its
recommendation engine, which analyses candidate
profiles and job descriptions to provide personalized job
suggestions. Machine learning techniques, including data
preprocessing, feature engineering, and model training,
are employed to enhance the accuracy of these
recommendations. The platform integrates APIs for
seamless data exchange, ensuring an efficient and user-
friendly experience.

Through this project, we demonstrate the potential of
Al in automating and optimizing recruitment workflows.
The results highlight improvements in candidate-job
matching, reducing hiring time and enhancing employer
decision-making. This research contributes to the growing
field of Al-driven recruitment solutions and provides a
scalable foundation for future enhancements

I. INTRODUCTION

This research focuses on developing an Al-
powered recruitment platform to enhance job-
candidate matching using machine learning.
Built with HTML, CSS, JavaScript, Flask, and
SQLite, the platform automates the hiring
process by analysing candidate profiles and job
descriptions to provide personalized
recommendations. By integrating Al-driven
solutions, it aims to improve efficiency, reduce
hiring time, and optimize recruitment
workflows. The study highlights the impact of
intelligent systems in modern hiring practices,

demonstrating their potential to streamline and
enhance decision-making for both job seekers
and recruiters

[I. RECRUITMENT
ARCHITECTURE

A. Frontend Layer

The frontend is built using HTML, CSS, and
JavaScript, providing an intuitive and user-friendly
experience for job seekers and recruiters. It allows
users to create profiles, upload resumes, browse job
listings, and receive personalized recommendations.
The interface communicates with the backend via
API requests, ensuring dynamic and interactive
functionality.

PLATFORM

B. Backend layer

The backend is developed using Flask, a
lightweight Python framework that handles API
requests, processes data, and manages business
logic. It serves as the bridge between the frontend
and the recommendation system. The backend
performs key operations such as user
authentication, job posting, profile management,
and recommendation generation.

C. Database layer

The platform utilizes SQLite as the database
management system to store and manage user
profiles, job listings, application history, and
recommendation data. The structured data is
retrieved and updated based on user interactions,
ensuring a responsive and efficient system.

D. Recommend System

The platform’s recommendation system analyses
job descriptions and candidate profiles to suggest
relevant job opportunities. It follows a structured
process: data preprocessing to clean and extract key
information, feature engineering to transform text
data using techniques like TF-IDF or word
embeddings, model training using collaborative

IJRTI2503150

International Journal for Research Trends and Innovation (www.ijrti.org)

http://www.ijrti.org/
mailto:1parthamin150702@gmail.com

© 2025 IJRTI | Volume 10, Issue 3 March 2025 | ISSN: 2456-3315

filtering, content-based filtering, or hybrid models,
and prediction & ranking to match candidates with
jobs based on skills, experience, and relevance.

E. Deployment and scalability

The platform is designed for easy deployment on
cloud or local servers, with Flask handling server-
side operations. Future scalability can be achieved by
upgrading the database, optimizing ML models, and
integrating more advanced Al-driven features.

[II. DEVELOPMENT WORKFLOW

A. Requirement Analysis

Identified key features such as user authentication,
job postings, and recommendations. Selected HTML,
CSS, JavaScript, Flask, SQLite, and machine
learning for development. Designed the system
architecture and data flow.

B. Frontend development

Built a user-friendly interface for job search,
profile management, and applications, integrating
RESTful APIs for dynamic interactions.

C. Backend development

Developed Flask-based APIs for handling
authentication, job postings, and recommendations
while ensuring security and efficiency.

D. Database management

Designed an SQLite database to store user and job
data, optimizing queries for fast retrieval and
updates.

E. ML and system optimization

Processed and analysed job and candidate data,
applying techniques like TF-IDF and word
embeddings for feature extraction. Implemented a
recommendation system using collaborative,
content-based, or hybrid filtering. Performed testing,
debugging, and performance optimization before
deploying the platform on a server.

IV. PERFORMANCE ANALY SIS

A. Recommendation system performance

The recommendation system's performance was
analysed using various evaluation metrics. Precision,
recall, and Fl-score were used to measure how
accurately job listings matched user profiles.

Additionally, metrics such as Mean Average
Precision (MAP) and Root Mean Square Error (RMSE)
helped assess the ranking quality of job
recommendations. To ensure computational
efficiency, feature extraction methods like TF-IDF
and word embeddings were optimized, reducing
processing time and improving recommendation
speed.

B. System efficiency and response time

The system’s efficiency and response time were
critical for a seamless user experience. API
performance was tested to measure response
times for job searches, profile updates, and
recommendation retrieval. Database
optimization techniques, including indexing and
guery optimization, were implemented to speed
up data retrieval in SQLite. Scalability testing was
also conducted to evaluate how well the
platform handled an increasing number of users
and data, ensuring consistent performance
under high loads.

C. User experience and platform usability

User experience played a significant role in
determining the platform’s overall effectiveness.
Frontend optimizations, such as lazy loading,
caching, and minimizing CSS and JavaScript, helped
improve page load times. Usability testing was
conducted to gather feedback on navigation ease,
recommendation relevance, and overall feature
accessibility. Additionally, robust error handling and
logging mechanisms were implemented to identify
and resolve issues efficiently, ensuring a stable and
reliable system.

V. COMPARATIVE STUDY

A. Traditional portals vs. Al portals

Conventional platforms rely on keyword-based
searches, leading to less precise job matches. In
contrast, this platform uses machine learning (TF-
IDF, word embeddings, collaborative filtering) for
personalized recommendations, reducing manual
effort

B. Rule based vs. ML based matching

Rule-based systems depend on exact keyword
matches, often missing relevant opportunities.
Machine learning models analyse skills, experience,
and job trends, providing more accurate, dynamic job
recommendations

C. Performance and scalibility

Older systems struggle with slow responses and
static filtering. This platform optimizes database

IJRTI2503150

International Journal for Research Trends and Innovation (www.ijrti.org)

http://www.ijrti.org/

© 2025 IJRTI | Volume 10, Issue 3 March 2025 | ISSN: 2456-3315

queries, API interactions, and ML models, ensuring
faster, scalable, and real-time recommendations

VI. CASE STUDIES

A. Enhanced job matching

A software developer with Python and Flask
experience struggled with irrelevant job suggestions
on traditional portals. Using this platform, the ML-
based recommendation system provided highly
relevant job matches, increasing the candidate’s
application success rate by 60%.

B. Faster hiring for recruiters

Atech company searching for a data scientist with
NLP skills faced challenges in manual screening.
The Al-powered system automatically ranked
candidates, reducing hiring time by 40% and
improving selection accuracy.

C. Improved job search experience

A fresh graduate applying for web development
roles found traditional portals complex and time-
consuming. This platform’s intuitive interface and
smart filtering allowed 30% more applications in
less time, enhancing job search efficiency.

VII. CHALLENGES

A. Data quality and processing

Resumes and job descriptions often contained
inconsistent formats, missing information, and
unstructured text, making data preprocessing
complex. Techniques like text cleaning, tokenization,
and feature extraction were necessary to improve
data quality for accurate recommendations.

B. System scalability and performance

Handling large amounts of job postings and user
profiles caused database queries and API responses
to slow down. Optimization techniques, such as
indexing, caching, and efficient query structuring,
were implemented to maintain performance.

C. User engagement and experience

Encouraging users to complete profiles and
interact with recommendations was a challenge.
Enhancements in U/UX design, real-time feedback
mechanisms, and personalized notifications
improved user engagement

VIII. FUTURE PROSPECTS

A. Real time learning and adaptive
recommendations

Integrating real-time feedback mechanisms will
allow the system to continuously learn from user
interactions, refining job recommendations based on
preferences, application history, and engagement
patterns.

B. Advanced NLP for resume and job analysis

Implementing deep learning-based NLP models,
such as BERT or GPT, can enhance resume parsing
and job description analysis. This will improve the
understanding of context, skills, and job role
compatibility, leading to more precise
recommendations.

C. Scalability and cloud integrations

Migrating to cloud-based infrastructure will
enable better scalability, allowing the platform to
handle larger datasets and higher traffic loads
while maintaining performance. Integration with
cloud Al services can further enhance processing
efficiency

IX. CONCLUSION

The Al-powered recruitment platform enhances
job matching and hiring efficiency using machine
learning and NLP, outperforming traditional job
portals with personalized recommendations and
reduced manual effort. Challenges like data
preprocessing, accuracy, and scalability were
addressed through TF-IDF, word embeddings, and
caching, ensuring relevant job suggestions and fast
response times. Performance analysis confirmed a
seamless user experience, and future
enhancements, including real-time learning, deep
NLP, and cloud scalability, will further improve job
search efficiency and streamline hiring processes.

REFERENCES

(1] Russell, S., & Norvig, P. (2020). Artificial
Intelligence: A Modern Approach (4th ed.). Pearson

[21 Aggarwal, C. C. (2018). Neural Networks and Deep
Learning: A Textbook. Springer

31 Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.,
& Dean, J. (2013). Efficient estimation of word
representations in vector space.

(4] Blei, D. M., Ng, A.Y., & Jordan, M. L. (2003). Latent
Dirichlet Allocation. Journal of Machine Learning
Research, 3,993-1022.

(51 Ricci, F., Rokach, L., & Shapira, B. (2015).
Recommender Systems Handbook (2nd ed.). Springer

IJRTI2503150

International Journal for Research Trends and Innovation (www.ijrti.org)

http://www.ijrti.org/

