NFC-Enabled IoT: Enhancing Website Interaction and Automation

Mithesh Gawande, Prem Bhamare, Prathamsh Bhoir, Pratik Kubal, Surekha Khot

Abstract: The integration of Near Field Communication (NFC) technology with the Internet of Things (IoT) has the potential to revolutionize a wide range of industries and applications. NFC, a wireless communication technology that allows for the exchange of data between devices over short distances, can be used to connect IoT devices and enable new forms of interaction and automation. By integrating NFC with IoT, it is possible to enhance the functionality and connectivity of IoT devices, and enable new forms of user engagement and automation. For example, NFC-enabled IoT devices can be controlled and monitored remotely, and can also communicate with other devices and systems. Additionally, NFC can be used to securely authenticate and authorize IoT devices, and to protect against unauthorized access and tampering. Despite the potential benefits, the integration of NFC and IoT also poses challenges such as security, data privacy, and interoperability. Ensuring the security of NFC-enabled IoT devices and the data they generate is crucial, as any breach can have serious consequences for individuals and organizations. As NFC and IoT continue to grow and evolve, it is important for industry leaders and governments to work together to address these challenges and ensure the safe and responsible implementation of this technology.

Keywords: NFC, Internet of things, web2.0

1. INTRODUCTION

The integration of Near Field Communication (NFC) technology with the Internet of Things (IoT) has the potential to enhance the way we interact with connected devices and automate various tasks. NFC, a wireless communication technology that enables data exchange between devices over short distances, can be used to connect IoT devices to websites and mobile applications, providing a seamless and convenient user experience. With NFC-enabled IoT, users can easily interact with connected devices and access information and services through websites and mobile applications. For example, using an NFC-enabled smartphone, a user can access their smart home controls, check the status of their appliances, and even control them remotely. Similarly, in retail stores, customers can use their NFC-enabled smartphones to access product information, reviews, and even make purchases without the need for cash or credit cards.

In addition to enhancing user interactions, NFC-enabled IoT also has the potential to automate various tasks and processes. For example, NFC-enabled IoT devices can automatically trigger actions based on user interactions, such as adjusting the temperature of a room or turning on the lights. This can help to improve efficiency, reduce human intervention and error, and increase safety and security.

This paper aims to explore the benefits and challenges of integrating NFC technology with IoT and how it can enhance website interaction and automation in different industries and applications.

2. RELATED WORK

1. A Survey on Enabling Technologies, Protocols, and Applications

Over time, the IoT is expected to have significant home and business applications, to contribute to the quality of life and to grow the world's economy. For example, smart-homes will enable their residents to automatically open their garage when reaching home, prepare their coffee, control climate control systems, TVs and other appliances. In order to realize this potential growth, emerging technologies and innovations, and service applications need to grow proportionally to match market demands and customer needs. Furthermore, devices need to be developed to fit customer requirements in terms of availability anywhere and anytime. Also, new protocols are required for communication compatibility between heterogeneous things.

There are several published survey papers that cover different aspects of the IoT technology. For example, the survey by Atzori et al. [2] covers the main communication enabling technologies, wired and wireless and the elements of
wireless sensor networks (WSNs). In [3], the authors address the IoT architecture and the challenges of developing and deploying IoT applications. Enabling technologies and application services using a centralized cloud vision are presented in [4]. The authors in [5] provide a survey of the IoT for specialized clinical wireless devices using 6LoWPAN/IEEE 802.15.4, Bluetooth and NFC for mHealth and eHealth applications. Moreover, [6] addresses the IoT in terms of enabling technologies with emphasis on RFID and its potential applications. IoT challenges are presented in [7] to bridge the gap between research and practical aspects.

The paper "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications" by Al-Fuqaha et al. (2015) provides an overview of the technologies, protocols, and applications of the Internet of Things (IoT). The authors survey various wireless communication technologies used in IoT, such as Zigbee, Z-Wave, Bluetooth, Wi-Fi, and NFC, as well as networking protocols, such as IPv6, 6LoWPAN, RPL, CoAP, and MQTT. They also cover middleware and application platforms, such as OpenIoT, oneM2M, and AllJoyn, that enable interoperability and integration among IoT devices. Additionally, the paper discusses security and privacy issues in IoT, and proposed solutions and frameworks to address these challenges. The authors conclude that the IoT has the potential to revolutionize various industries and improve the quality of life, but addressing the challenges in terms of security and privacy is crucial to its success.

2. Opportunities, issues and challenges towards a smart and sustainable future

The rapid development and implementation of smart and IoT (Internet of Things) based technologies have allowed for various possibilities in technological advancements for different aspects of life. The main goal of IoT technologies is to simplify processes in different fields, to ensure a better efficiency of systems (technologies or specific processes) and finally to improve life quality.

The paper discusses the potential of the Internet of Things (IoT) in the retail industry, as well as the challenges that need to be overcome for successful implementation. The authors begin by outlining the benefits of IoT in retail, such as improved customer service and experience, enhanced inventory management, and increased operational efficiency. They then discuss the various IoT technologies and applications that are being used in the retail industry, including RFID and NFC tags, beacons, and smart shelves. The authors also address the challenges that need to be overcome for successful implementation of IoT in retail, such as

i. Privacy
ii. Lack of standardization
iii. Data security

The authors conclude that the IoT has great potential to revolutionize the retail industry, but that retailers must carefully consider the challenges and address them in order to fully realize the benefits of this technology. They also suggest that a collaborative effort between retailers, technology providers, and regulators is needed to overcome these challenges and to ensure that the IoT can be successfully implemented in the retail industry.

3. Smart Home Systems Based on Internet of Things

IoT, smart home and cloud computing are not just a merge of technologies. But rather, a balance between local and central computing along with optimization of resources consumption. A computing task can be either executed on the IoT and smart home devices or outsourced to the cloud. Where to compute depends on the overhead tradeoffs, data availability, data dependency, amount of data transportation, communications dependency and security considerations. On the one hand, the triple computing model involving the cloud, IoT and smart home, should minimize the entire system cost, usually with more focus on reducing resource consumptions at home. On the other hand, an IoT and smart home computing service model, should improve IoT users to fulfill their demand when using cloud applications and address complex problems arising from the new IoT, smart home and cloud service model.

The paper presents a proposal for an NFC-enabled smart home system as an application of the Internet of Things (IoT). The proposed system uses Near Field Communication (NFC) tags to enable users to control and monitor the various devices in their home, such as lights, thermostats, and appliances, using their mobile devices. The system utilizes NFC technology to provide a convenient and user-friendly interface, allowing users to perform tasks such as turning on lights, adjusting thermostat settings, and monitoring energy consumption. The authors also highlight the potential benefits of such a system, such as increased energy efficiency and improved home security.

Paper proposes a smart home system that utilizes Near Field Communication (NFC) technology to control and monitor devices in the home. The system uses NFC tags that can be attached to devices, such as lights and appliances, and a mobile application that allows users to interact with these devices through their mobile devices.

4. Enabling NFC-based Secure Authentication for the Internet of Things
propose a system that uses Near Field Communication (NFC) technology to enhance security in Internet of Things (IoT) devices. The system utilizes NFC-enabled smart cards as a secure means of authentication, providing an additional layer of security beyond traditional password-based authentication methods.

The proposed system uses a public key infrastructure (PKI) to ensure the authenticity of the smart cards and the devices they are used to authenticate. The PKI system includes a certificate authority (CA) that issues digital certificates to the smart cards and the devices, as well as a registration authority (RA) that manages the registration and revocation of the digital certificates.

The proposed system also includes a secure communication protocol that ensures the privacy and integrity of the data exchanged between the smart cards and the devices. The protocol uses symmetric key encryption for the data and the authentication of the smart cards and the devices.

The proposed system is based on a Public Key Infrastructure (PKI) that ensures the authenticity of the smart cards and the devices they are used to authenticate. The PKI system includes a certificate authority (CA) that issues digital certificates to the smart cards and the devices, as well as a registration authority (RA) that manages the registration and revocation of the digital certificates.

The proposed system also includes a secure communication protocol that ensures the privacy and integrity of the data exchanged between the smart cards and the devices. The protocol uses symmetric key encryption for the data and the authentication of the smart cards and the devices.

5. **IoT-Based Smart Objects**

the use of IoT-based smart objects for enhancing web interaction by enabling users to interact with websites using various IoT devices. The authors begin by providing an overview of the IoT and its potential for enhancing web interaction. They then present a framework for IoT-based web interaction that involves the use of smart objects, such as smartphones and smart appliances, to interact with websites.

The authors also discuss the various challenges that need to be overcome for successful implementation of IoT-based web interaction, including privacy concerns, lack of standardization, and lack of understanding of the technology among users. They also suggest that a collaborative effort between technology providers, website developers, and regulators is needed to overcome these challenges and to ensure that the IoT can be successfully implemented for web interaction.

The authors conclude that the IoT has the potential to revolutionize web interaction by allowing users to interact with websites using IoT devices and smart objects. They also suggest that more research is needed to fully understand the potential of IoT-based web interaction and to address the challenges that need to be overcome for successful implementation.

It also provides an overview of the IoT and its potential for enhancing web interaction. Along with a framework for IoT-based web interaction that involves the use of smart objects, such as smartphones and smart appliances, to interact with websites. The authors discuss the challenges that need to be overcome for successful implementation of IoT-based web interaction, including privacy concerns, lack of standardization.

3. **OUR SYSTEM**

In our system we have studied all the shortcomings of the above research paper systems and have tried to implement it. This system has some unique features.

1. **Multistep form for ease of use**

By incorporating a multistep form, the process of purchasing a subscription or registering as a new user is made more user-friendly and efficient, guiding users through the process step by step.

In the proposed NFC-based sports club website, a multistep form is used to simplify the process of purchasing sports subscriptions for users. The form is divided into several steps, each with a specific set of fields and instructions, making it easy for users to understand and complete. This improves the user experience by reducing the complexity of the process and minimizing errors.

2. **Real-time update**

The system utilizes REST API to connect the hardware system and the website, allowing for real-time access control and updates to user subscriptions.

the proposed system uses a real-time update feature Using REST Api, which means that the website and the hardware system are constantly communicating with each other, ensuring that the information displayed on the website is always accurate and up-to-date. This allows users to view their subscription status and access the sports club in real-time, without any delays.
3. **Easy monitoring and management**
The proposed system provides easy monitoring and management of the sports club's activities. The website acts as a central hub for all the information related to the sports club, making it easy for administrators to access and manage user subscriptions, access logs, and other relevant data.

4. **Customizable settings**
The proposed system allows for customizable settings, which means that the administrators can adjust the system’s settings to suit the needs of the sports club. This includes setting access rules, modifying subscription options, and configuring the hardware system's settings.

5. **Easy integration**
The proposed system is designed to be easy to integrate with other systems and devices. The use of REST API allows for seamless communication between the website and the hardware system, and the system can be integrated with other devices such as security cameras, access control systems, and more. This allows for a more streamlined and efficient management of the sports club.

4. **CONCLUSION**
The integration of NFC technology with IoT in the context of website interaction and automation can provide a variety of benefits for both users and administrators. The use of a multistep form can simplify the process of subscribing to sports clubs and purchasing subscriptions, while real-time updates and easy monitoring and management can ensure that users have the most up-to-date information and that administrators can easily keep track of subscribers. Customizable settings and easy integration with other systems can further enhance the user experience and make the system more versatile. Overall, it demonstrates the potential for NFC-enabled IoT to improve the efficiency and user-friendliness of website interactions and automation in various contexts.

5. **ACKNOWLEDGMENTS**
I thank my college Principal Dr. V. N. Pawar sir for providing the required resources for the development of the project. I would also like to thank HOD Prof. V. Y. Bhole for suggesting such a great project topic for departmental purpose. My sincere thanks to my Project Guide Prof. S. A. Khot for helping, suggesting new ideas and guiding me throughout the semester. I am also grateful to all the faculty members for their support and encouragement.

REFERENCES