A REVIEW STUDY ON THE THERMAL PERFORMANCE OF ENGINE CYLINDER WITH FINS

Gyanendra Dhakar1, Deepak Sahu2

1Research Scholar, Jabalpur Engineering College, Jabalpur - 482011, India
2Assistant professor, Department of Mechanical Engineering, Jabalpur Engineering College, Jabalpur - 482011, India

Abstract: One of the key components of the engine is the engine cylinder, which undergoes excessive changes in temperature and heat stress. Fins are mounted on the cylinder surface to increase the amount of heat discharged from convection. The current research outlined the enhancement evaluations of heat dissipation and the resulting stress reduces over a flat surface in distinct motor cylinder types in order to maximize the increase in heat transfer efficiency. The heat resistance is a multiple characteristic of thermal efficiency. Optimized the conclusions of geometric constraints, fine length, fine area and fine material with base temperature to ambient temperature variance on the heat transfer efficiency of fine arrays and the ideal fine separation value. The effect of fine density on heat transfer behaviour is examined Heat transfer also increases with the material's thermal conductivity and the pin shapes.

Keywords: heat transfer, extended surfaces, Thermal analysis, FEM, Analysis, Analysis and Heat transfer enhancement.

I. Introduction

The engine cylinder is one of the automotive's key elements, prone to elevated temperature and heat stress variations. Combustion occurs at elevated temperature and stress in an internal combustion engine combustion chamber, which can affect the probability of piston malfunction, overheating, piston ring damage, compression ring, oil ring etc. Even the excess temperature will damage the cylinder fabric. It also occurs because the risk of pre-ignition is overheating. In air-cooled motorcycle engines heat is emitted into the atmosphere by forced convection. The heat transfer velocity depends on wind speed, motor surface configuration, internal surface area and ambient temperature. In this function on motor block fins, wind speed is not considered taking heat inside by conduction and convection into consideration in this job evaluation. Motorcycle engines are usually designed to run at a given ambient temperature, but cooling beyond the optimum limit is often not considered, as overall performance may be reduced. Therefore, it can be noted that only adequate refrigeration is required. Construction of the air-cooling system is much simpler. Therefore, it is important for an air-cooled engine to use the fins efficiently in order to achieve uniform temperature in the engine cylinder. An internal combustion engine is a motor in a combustion chamber where a gas is combusted. The development of high-temperature, high-pressure air produced by combustion adds immediate power to motor components like pistons, turbine blades or a nozzle. This power pushes the entity over a range, producing helpful mechanical energy. Air-cooled engines are replaced by more powerful water-cooled engines, but all two wheels use air-cooled motors since air-cooled engines need less weight and less power.

II. Literature Review on Engine Cylinder thermal behaviour

Different research conducted in the past decade shows the heat-rejection engine cylinder with different fins sizes, fine pitch, finish structure, wind speed, material and atmospheric conditions. Distinctive literature overviews of how the heat exchange across extended surfaces and the heat exchange coefficient determined by the nature of the cross-area is helpful in understanding better geometry and material for the fins for better cooling of the motor. Srinivas et. al. (2019) the main aim of this study is to analyze the fins of engine cylinders which are involved in heat transfer by using various materials, insulated and non insulated tips of fins. 3d modeling is done by using solidworks software for design of fins. thermal analysis helps in determining the temperature distribution over the entire body with respect to time. Ansys software is used for thermal analysis of fins. the main theme is to observe the performance characteristics of insulated and Non-insulate3d tips of 2mm and 3mm. we used aluminium 6061 and magnesium alloy ZC63A for fins, grey cast iron for cylinder. the design on different geometries such as circular and modified type of fins.
Arjun Vilay et. al. (2018) The research aimed to determine the optimum size and shape of the longitudinal rectangular fins, Cylindrical Pin Fin, including horizontal thermal conductivity. As a result of the shape of the transition, this study was completed with the measured maximum heat transfer rate of the fin surface and minimal pressure loss in the pipeline. The results of various measurements for Laminar and turbulent with various Nusselt no. After solving the problem of post-processing, the X-Y plot and vector drawing the Laminar and turbulent flows including heat transfer rate and pressure loss, after completing the discovery of various results as outline figure. In the light of the discussions based on the findings, the print data concluded that heat transfer is the smallest rectangular fins on the surface and that the wide round Pin Fin surface and pressure loss is the minimum path, round the fins to allow the maximum heat transfer rate to be used better.

D. Madhavi et. al. (2018) The primary aim of using those cooling fins is to cool the 220cc engine cylinder by some air. Although the speed of heat dissipation can be increased by increasing the surface area of the fin per study, designing such a large complicated 220cc engine is extremely difficult. A parametric model of piston bore fins was developed to forecast the heat behaviour. The parametric model is built within the 3D modeling software Solid functions. Thermal analysis is conducted on the fins to assess variability in the distribution of temperature over moment. Analysis is performed using ANSYS. Analysis is done using various materials. Cast Iron is the element usually used to create the body of the fines. It is substituted with aluminum alloy 6082 in this study. Complete heat flux for aluminum alloy 6082 is more than the remaining aluminum alloy 6082, condenser and evaporator zinc alloy fabrics, by looking at the study's performance. Aluminium alloy will be suitable for cylindrical fins.

Mahendra Kumar Ahirwar et. al. (2018) The primary aim of the project is to explore and compare the heat characteristics with 100 cc Hero Honda Motorcycle fins by different design, material, and density. Parametric cylinder designs with fins were developed to forecast the temporary conduct of heat. The aluminum alloy 6063 used in the construction of the prototypes currently has a thermal conductivity of 200W / mk. Study of designs intended to achieve heat temperature of 1000 oC. The power flows from the combustion chamber of an internal combustion engine are dissipated in 3 distinct ways. Transient thermal analyzes were performed for the real and proposed engine cylinder configuration to optimize geometric parameters and boost heat transfer from the IC engine. The result shows that the suggested IC engine configuration has a higher efficiency and heat transfer rate from the cooling area in the IC engine, which is why the result of this job is more based on it and also suggested replacing the current model with the use of ANSYS 17.0 software.

Pradeep Kumar et. al. (2018) Thermal analysis of the engine block with fins was evaluated in this study. Knowing the heat dissipation inside the cylinder is useful by performing thermal analysis on cylinder block caps. Fins are essentially mechanical elements used by the convection method to cool different buildings. Most of their layout is essentially restricted by system layout. However, certain parameters and geometry could still be changed to improve heat transfer. Simple fin design such as rectangular fins and curved fins is chosen in most situations. Many experimental work has been carried out to enhance the heat discharge of the internal combustion engine cylinder and to enhance the finishing effectiveness. The engine block fins model was created in ANSYS 14.5 3D software and continuous thermal analysis is performed on the fins and block to determine the transient state temperature variability with gaps. Use of ANSYS software to perform thermal analysis.

S. Karthik et. al. (2018) This research summarizes the selection of finish products for various apps. Fins have various apps like economizers, heat exchangers, etc. Cylinder portion is the core of the engine in internal combustion engines and this cylinder block forms the wall of a combustion chamber where air fuel mixture is burning. The cylinder wall is subjected to elevated temperature and heat transfer through the cylinder blades due to the ongoing combustion cycle. If the heat is not correctly absorbed then the engine's operating effectiveness will be reduced. Mostly the speed of heat transfer through the fin fabric relies on the thermal conductivity of the fabric selected and other characteristics. The normal Pin-Fin sample is regarded for assessment. By validating the ANSYS 16.1 operation. We can acquire the necessary material characteristics of metals by offering the evaluation output as the input for Artificial Neural Network. This system is very helpful in selecting the finishing products for various apps.

Ravilla et. al. (2018) The primary objective of the study is to assess by distinct geometry the heat features of cylinder fins. When filters operate with large temperature differences between the fine base and the surrounding fluid, the effect of the temperature-dependent thermal conductivity of the fine material must be included in the evaluation in order to correctly assess its heat production. Three aluminum alloys (A380, B390 and C443) are used in this research. The different parameters (i.e., cap shape and size) are regarded in the research, shape (circular and rectangular), and density (3 mm) by altering the fin shape to triangular form, thereby reducing the fin body weight to increase the heat transfer rate and cap effectiveness.

M. Rajesh (2017) The study's primary objective is to evaluate heat characteristics through different geometry, material (Cu and Al alloy 6082), distance between the fins and density of cylinder seals. For both geometries, the Fins designs are developed by changing the linear geometry and also by variable fins density. Pro / Engineer & Unigraphics is the 3D design tools used. Thermal analysis is performed on the cylinder blades to determine the distribution of variation temperature over moment. The analyzes are carried out using ANSYS. Knowing the heat dissipation inside the cylinder is useful by performing thermal analysis on the engine cylinder caps. The concept applied in this paper is to raise the level of heat dissipation by using the unseen working fluid, only air. All products show a linear temperature distribution alongside the fins duration. The circular propellers also improve the engine's effectiveness by decreasing the engine's weight.
Sagar et. al. (2017) The fundamental intention of the reward work is to analyses the thermal houses like Directional warmness Flux, whole warmth Flux and Temperature Distribution by way of various Geometry (circular, Rectangular), material and thickness of Fin (3mm, 2mm) of an approximately rectangular cylinder model all set in SOLIDWORKS-2013 which is imported into ANSYS WORKBENCH-2016 for Transient Thermal evaluation with an normal inner Temperature and Stagnant Air-Simplified case as Cooling medium on Outer floor with affordable film switch Coefficient as Boundary stipulations. By way of growing the outside discipline, we can increase the heat dissipation rate, so designing this type of massive difficult engine could be very difficult. The more than a few parameters (i.e., geometry and thickness of the fin) are viewed, with the aid of lowering the thickness and also with the aid of altering the form of the fin to circular form from the traditional geometry i.E. Rectangular, the weight of the fin physique reduces there by growing the warmth switch expense and efficiency of the fin.

Kummitha et. al.(2017) In this research, an attempt was produced to figure out by using ANSYS the thermal analysis of cylinder block with fins for distinct metals, and the findings were evaluated to discover the finest material that provides the stronger heat transfer rate and comprises of light weight. From the outcomes of the thermal analysis, it should be noted that both gray cast iron and magnesium alloys are the finest two composite materials which, owing to their higher density, provide a stronger heat transfer rate. Most of the heavy vehicle cylinder blocks are produced with these components in practical apps. However, owing to its greater weight, these plastics are not very appropriate for light cars, so there is a growth of light aluminum alloys, so some aluminum alloys are also regarded for thermal analysis in this document and contrasted all the outcomes for the best one. From all the nodal temperature contours mentioned above and from the column graphs, it should be noted that A380 had the stronger heat transfer frequency and more resistance relative to other alloys regarded.

Pulkit Sagar et. al. (2017) The inquiry addressed determining the impact on heat transfer of the geometry, distinct size, and surface roughness of the propellers. The project's primary goal is to analyze the frequency of heat transfer by variable fins ` form and surface roughness. The model is developed by differentiating fin form and roughness in AUTODESK INVENTER 2015and displayed in AUTODESK NASTRAN 2015. The primary objective of this article is to explore by altering the geometry following impacts on heat transfer by fins in motorcycle and other motor vehicles. It also concludes that geometry changes can boost and reduce the specific heat, temperature flow implemented, heat flux, etc.

Sandeep Kumar et. al. (2017) The present work aims to increase the heat transfer rate from the heating zone in the IC engine, for which transient thermal analysis was carried out on the actual design of the 125 CC single cylinder engine bajajaj discover. Transient thermal analyzes for the actual and proposed design of the engine cylinder were performed to optimize geometric parameters and improve heat transfer from the IC engine. The outcome is that the suggested model -2 of the IC engine has stronger efficiency and heat transfer rate from the cooling area in the IC engine, which is why the outcome of the current job is more focused on it and the substitution of the current model is also suggested. The result of transient thermal analysis of actual design of engine cylinder at ambient temperature 25 °C indicates the maximum temperature is 650 °C and minimum temperature is 92.091 °C, Maximum Total heat flux generated is 16.2 W/mm² and minimum heat flux generated is 00332 W/mm². The maximum directional heat flux in X-direction generated is 12.35 W/mm² and minimum Directional heat flux generated is -10.108 W/mm².

A Sathishkumar et. al. (2016) The aim of this inquiry is to examine the heat characteristics using Ansys work bench by varying design, content and angle of cylinder fins, and the designs are produced by altering the geometry such as rectangular, circular, angular and bent formed fins. Transient thermal analysis demonstrates temperature variation over moment and accurate heat simulation is very helpful in identifying layout parameters for enhanced lives. The purpose of this investigation is to examine the heat features using Ansys working table by different structure, material and angle of cylinder fins, and models are created by changing the geometry such as rectangular, circular, angular and curved fins. Transient thermal analysis shows variability in temperature over time and precise simulation of heat is very useful in defining design parameters for improved life.

Richard et. al. (2016) The objective of this inquiry is to evaluate cylinder blocks of 4S SI Engines of two wheelers from three distinct firms namely; HONDA, TVS, YAMAHA, in order to determine the thermal impacts of fuel substances on them with regard to temperature and heat flux changes throughout the evaluation period, and also to compare the three blocks. These pieces are each replicated first using SolidWorks layout software. These blocks are then evaluated using Ansys software to determine the heat impacts when the engine runs at elevated velocity, average velocity, poor velocity and when the engine is subjected to variable atmospheric circumstances in Greater Noida for 25 minutes during the summer and winter. It was deduced from the study that Honda Activa always has a greater quantity of heat wasted over moment than TVS Wego and Yamaha Ray Z, but dissipates at least in the summer season, demonstrating that temperature is a important variable in heat dissipation regardless of the variation in thermal characteristics.

Narayan et al. (2016) The primary objective of this research is to evaluate the heat characteristics using Ansys job bench by changing the structure of cylinder caps. The 3D geometry model is developed using SOLIDWORKS 2016 and its heat characteristics are evaluated using Ansys R 2016 workbench. In many apps, such as convection, the variability in temperature distribution over moment is of concern. Precise heat simulation could allow the identification of critical design parameters for improved lifes. Aluminum alloy AA 6061 which has a heat conductivity of 160 – 170 W / mk is currently the material used for the manufacture of car fin heads. Analysis for cylinder fins using this material is currently being carried out.
Manir Alam et. al. (2016) The primary aim of using these refrigering fins is to air-cool the engine cylinder. Cast Iron is currently the material used to manufacture the fin body of the cylinder. Copper and aluminum alloy 6082 products are also evaluated in this thesis. Thermal analysis is carried out using all three materials by changing geometries, distance between the fins and thickness of the fins for the actual model of the fin body of the cylinder. For Aluminum alloy 6082 density is lower compared to other two materials, so the weight of the fin body is lower with Aluminum alloy 6082. For copper, thermal conductivity is more than two other metals. Thermal flux is more for aluminum alloy than other two products by watching the outcomes of the thermal analysis and also by using aluminum alloy its weight is lower, so it is easier to use aluminum alloy 6082.

Ramesh Kumar et. al. (2016) The heat transfer efficiency of the engine cylinder cap is evaluated in this research by designing fins with different shapes such as rectangular, trapezoidal, triangular and circular segmental extensions. These are likened to the fine without extensions and the thermal transfer frequency is discovered to boost by 5-13%. The fundamental principle behind this idea of offering extensions on finned substrates is to raise the surface area of the end in touch with the fluid / coolant that flows around it, thereby improving the heat transfer rate. It is very evident from the outcomes that the use of fine extensions offers both efficient and effective heat transfer. Fin with extensions provide approximately 5 to 13 percent more heat transfer than fins without extensions.

Ashok Reddy et. al. (2015) Using the SOLIDWORKS software, the main objective of our project is to design the cylinder head using standard formulas and modelling. Using ANSYS software, the stable thermal analysis is carried out. In this scheme we analyse the different heat characteristics of the cylinder head (Rectangle and Circular) for different geometric forms and further correlate the numerical values of the cylinder heads with the finite element numbers. From the above outcomes it can be seen that the circular fin is more appropriate than rectangular fins because in this venture we built a cylinder fin body used in a motorcycle and built in Solid Works parametric 3D modelling software. The fin form is curved and triangular.

Chaitanya et. al. (2014) The primary objective of this article is to evaluate the heat characteristics using Ansys Work Bench by using different design, material and density of cylinder fins. Transient heat assessment determines time-varying temperatures and other heat amounts. In many apps, such as convection, the variability in temperature distribution over moment is of concern. Precise heat simulation could allow the identification of critical design parameters for enhanced lives. Aluminum alloy A204, which has a thermal conductivity of 110-550W / mk, is currently the material used for the manufacture of cylinder fin body. Analysis for cylinder fins is currently carried out using this material and also using aluminum alloy 6061 with greater thermal conductivity.

G. Babu et. al. (2013) The project’s primary objective is to evaluate the heat characteristics of cylinder fins by different design, content and density. Parametric cylinder designs were created with fins to forecast the temporary heat conduct. The designs are developed by adjusting the geometry, rectangular, circular and bent formed fins as well as the fins’ width. Pro / Engineer is the 3D modeling software used. The analyzes are carried out using ANSYS. Currently Aluminum Alloy 204, which has a thermal conductivity of 110-550W / mk, is the material used for the manufacture of cylinder fin heads. Using this product, we analyze the cylinder caps and use aluminum alloy 6061 and magnesium alloy with greater thermal conductivity.

III. Conclusion

One of the vital engine parts is the engine cylinder, which is subjected to excessive changes in temperature and hot burdens. Fins are laid on the bottom of the heat source layer to enhance heat exchange by convection on the outer layer of the engine cylinder. This study showed the heat exchange studies and the relative weight dropped over a level ground. Highlights of the different heat execution are the thermal resistance. The effects of geometric limitations, temperature generation inside the cylinder and heat dissipation structure in model with adjacent temperature range in the execution of fine designs heat exchange and the optimal final partition value were addressed. The effect of cylinder material on the results of the heat exchange is analyzed Heat exchange increases with the material’s thermal conductivity and the cylinder model.

References

© 2021 IJRTI | Volume 6, Issue 1 | ISSN: 2456-3315